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Abstract

In the last 25 years approximation algorithms for discrete optimization problems have been
in the center of research in the fields of mathematical programming and computer science. Re-
cent results from computer science have identified barriers to the degree of approximability of
discrete optimization problems unless P = NP. As a result, as far as negative results are con-
cerned a unifying picture is emerging. On the other hand, as far as particular approximation
algorithms for different problems are concerned, the picture is not very clear. Different algo-
rithms work for different problems and the insights gained from a successful analysis of a par-
ticular problem rarely transfer to another.

Our goal in this paper is to present a framework for the approximation of a class of integer
programming problems (covering problems) through generic heuristics all based on rounding
(deterministic using primal and dual information or randomized but with nonlinear rounding
functions) of the optimal solution of a linear programming (LP) relaxation. We apply these
generic heuristics to obtain in a systematic way many known as well as new results for the
set covering, facility location, general covering, network design and cut covering problems.
© 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.

1. Introduction

Given our inability to efficiently solve several discrete optimization problems (in
particular NP-hard problems) exactly, it is natural to ask whether it is possible to
approximate them. We will focus on minimization problems, but a parallel theory
can be developed for maximization problems (see for example [1]). Algorithm 4 con-
stitutes an approximation algorithm for minimization problem Il with guarantee
f(n), if for each instance 7 of size n of Il, Algorithm 4 runs in polynomial time in
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n and returns a value Z,(/) such that Z,(I) < f(n)Z*(I), where Z*(I) is the optimum
solution value for instance /. The obvious question is: Is it possible to approximate
optimization problems, whose decision version is in NP within a certain guarantee f(n)?

Recent progress in interactive proof systems [2,3] showed that there are classes of
problems which cannot be approximated with a guarantee better than f(»n) unless
P =NP.

In the last 25 years there have been several approximation algorithms proposed
for NP-hard problems. Unfortunately, the proposed algorithms are problem specific.
Typically, a particular approximation algorithm works for a specific problem and
the insights gained from a successful analysis of a particular problem rarely transfer
to another.

As a result, in our opinion, the following questions have not yet received satisfac-
tory answers:

1. What is the reason that certain problems can be approximated better than others?
2. Is there a systematic way to generate good (in particular best possible) approxima-
tion algorithms?

In the present paper we attempt to provide some insights to these questions by
focusing on general covering problems of the type:

minimize cx
subject to Ax = b, (1)
x€eX,

where the entries in 4, b, ¢ are nonnegative integers and the set X is either {0,1}" or

Z% . There is a very large collection of discrete optimization problems that have cov-

ering formulations (see Sections 2-5).

Our contributions in this paper are as follows.

1. We propose and analyze a randomized rounding heuristic with a nonlinear
rounding function. With the exception of the work of Raghavan and Thompson
[4], and Srivastay and Stangier [5,6] most applications of randomized rounding
have been to problems in which all 0—1 solutions to an integer programming pro-
blem are feasible. The papers just mentioned used linear rounding functions to
obtain approximation results for special cases of the set packing problem. We ex-
pand the power of the method by considering nonlinear rounding functions as
well as applications of the method to problems, in which there is a probability
that the rounded solution is infeasible. We apply the heuristic to set covering, fa-
cility location, network design and general covering problems. We show that our
method matches the best possible approximation bounds for all these problems.

2. Motivated by the problem of covering cuts in a graph that encompasses several
important graph problems (the minimum spanning tree, connectivity problems,
the steiner tree problem, the matching problem, etc.) we identify an interesting
conmnection between the analysis of approximation algorithms and random graph
theory. In particular, we formulate a natural general conjecture that could have
interesting applications in approximation algorithms.
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3. We propose and analyze a generalization of a well known generic dual heuristic
for general covering problems. Our analysis in this part of the paper illustrates
the importance to the design of a good approximation algorithm for a discrete op-
timization problem of a deep understanding of the structural properties of its LP re-
laxation. Our method can be seen as an extension of the work of Goemans and
Williamson [7], Williamson et al. [8] and Goemans et al. [9] in the approximability
of cut covering problems to general covering problems.

The outline of the paper is as follows: In Section 2, we propose our first generic
heuristic that uses randomization and apply it to the following problems: set cover-
ing, facility location and arbitrary covering problems. In Section 3, we propose our
second generic heuristic that uses information from the LP dual problem and apply it
to general covering problems obtaining the best known guarantee for the problem.
In Section 4, we examine a special covering problem involving covering cuts in an
undirected graph. We identify connections between the design of approximation al-
gorithms for this problem and the theory of random graphs with nonuniform prob-
abilities. As an application, we use the randomized heuristic in a particular network
design problem. The last section contains some discussion of open problems.

2. Randomized rounding with nonlinear rounding functions

In this section we study discrete optimization problems for which we have an in-
teger programming formulation:

(IPy) 1Z, = minimize cx
subject to  Ax = b, (2)
x € {0,1}"
where the entries in A4, b, ¢ are nonnegative integers. We consider its LP relaxation:
(LPy) Z{ = minimize cx
subject to  Ax = b,
x €[0,1]".

Throughout the paper we denote with 1Z (Z) the value of the optimal IP (LP) solu-
tion. We propose the following general randomized scheme to approximate Problem
(IPl)I

A generic randomized heuristic

1. Solve the LP relaxation (LP,) obtaining the solution x*.

2. Round the solution as follows:  P{x; = 1} = f(x}).

3. Use a derandomization procedure to find a deterministic approximation.
Randomized rounding heuristics were first proposed by Raghavan and Thompson
[4] to approximate a VLSI design problem (a min max-type of problem). They used
f{x) =x to round. Yannakakis [10] interprets an algorithm of Johnson [11] for
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MAXSAT as a randomized rounding heuristic with a linear rounding function

(f(x) =x) and Goemans and Williamson [12] use nonlinear rounding functions

f(x) to round, matching the best known guarantee (obtained in [10] using maximum

flow techniques) of 2 for MAXSAT. The natural questions that arise in the context

of the generic randomized heuristic are:

1. How does one choose the rounding function f(x)?

2. Is it possible to find an integer feasible solution always?

3. How does the cost of the obtained solution compare with that of the LP relaxa-
tion?

4. How does one derandomize?

Our plan is to address these issues with respect to particular examples.

2.1. The set covering problem

Givenaset N = {l,...,n}, weights¢; = 0 for j € N and a family of m sets S; C N,
find a set § C N such that [S N S;[ > 1, such that >, ¢c; is minimized. In order to
formulate the problem we let a; =1 if j € S;. Then the set covering problem can
be formulated as follows:

(IP) 1Z, = minimize Z;':l cx;
subject to Z::la,-jxj =1, i=1,...,m,
X; € {0, 1}

Lund and Yannakakis [3] proved that the set covering problem cannot be ap-
proximated within a factor smaller than O(logm) unless P = NP, i.e., if there exists
a polynomial time algorithm within Jlogm from the optimal value, then P = NP.
Johnson [11] and Lovasz [13] propose a greedy heuristic with value Zg for the pro-
blem with ¢; = 1, such that

% < HDD) < logD+ 1,
where H(D) = Y2, 1/i and D is the maximum columns sum. Chvétal [14] extends
the heuristic for the case of general ¢; > 0 proving the same guarantee. Bronniman
and Goodrich [15] describe an approximation algorithm with a bound that is a loga-
rithmic function of the VC dimension of the constraint matrix 4 = {a;}.

Applying the randomized heuristic, we solve the LP relaxation and find the solu-
tion x; with value Z,. We round as follows:

Plx;=1}=f(x}) =1~ (1 —x;f)k, k =logD,

where D = max; [D,|, with D; = {i: j € S;}. The interpretation is that we flip a coin
that has probability x; of giving heads, k times. If, in any of these & flips the coin
shows heads, we round x; to one, otherwise we round to zero. Let xy be the solution
vector given by the heuristic (notice that the solution is not always feasible). Let Zy
be the cost of the proposed solution.
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Theorem 1.
E|Zul|xy is feasible] < log D
Z S (1 -1/D)>’

In particular,
17, logD
— < —.
Z (1-1/D)

By derandomizing the randomized scheme we can find in polynomial time a feasible so-
lution H such that

Zu < logm
Zz = (l—l/m)m

Proof. Let V; be the event that constraint i is violated by xy. Let U, be the event that
constraint i is satisfied. Let F = (), U; be the event that the solution xy is feasible.
Then

PV} = P{iaijxj = 0} = P{ij = O} = HP{xj =0} = H(l “x;)k

JES; JES; JES;

< He~kx; — kz,eslx] _ e—kZ;lea,-jx; g eik.
JES:

Notice also that

Pinvt = [[ Pl =0} J[ Pix, =0} J] Plx; =0} = P{riP{y;}.

JESAS; JESAS; JESINS;
Therefore,

P{UNU} =1 = P{Vi} = P+ PO T}
= 1-P{Vi} — P} + P{VIP{Y} = P{ULP{U},

which is intuitively obvious, since P{U;|U;} > P{U;}. In general,
P{nu} = TP

Moreover,
“y P{Flx; =1}
E[Zy|F] = E ¢iP{x; =1|F} = g ¢ Pl{jF} P{x; = 1}.

Let D} be the complement of D;. Then
P{Flx; =1} Pl ens U - 1
P{F} PN U}~ P Niep, Ui}
because P{Y, U} = P{(epe UdP{ s, Ui} Since
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P{Ou} = TTPw =TJa P 2 (1-eH?,
ieD; ieD; i€D;

we obtain that

ElZu|F) < Y c(1—e®)™Pl1 - (1-x))

where D = max; |D;|. Choosing k = log D, we obtain that
logD
(1- —)
This implies that there exists a feasible solution with cost at most O(log D)Z;,, prov-
ing that:
1Z,

— < O(logD).
2

E[Zu | F] < = O(log D)2,

We will now derandomize this randomized scheme to find a feasible solution with
value within O{logm) from Z,. Notice that the guarantee is somewhat weaker as
D < m. We introduce the following potential function:

oX,..., X, Zc,X +MZl{A

where

1, Z;;I aij-Xj =0,
Yy = .
0, otherwise
and M is a large constant to be chosen later. Notice that if ®(X) = Yo X < M, X
is feasible, while if X is infeasible ®(X) > > =1 €:X; + M > M. Therefore, the value

of M distinguishes feasibility. If we select

1 with probability 1 — (1 —x})",
ij =
0 with probability (1 — xj*.)" ,

we obtain that

E[®X)] = Zn:cj(l -1 —xj)k) +M(1—P{F}) < kZy + M(1 - (1 —e*)").
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If we choose M so that kZ, + M(1 — (1 —e *)") < M, then E[®(X)] < M. We then
use the method of conditional expectations (see [16, p. 223]), i.e., at the very first step
we select X; = 0 if E[®(X)|X; = 0] < E[®(X)|X; = 1]; otherwise we select X; = 1.
Let xi,...,x,..1 be the values of the variables that the algorithm selected in the first
r~ 1 steps. At step r, we select X, =x, in order to minimize over x, € {0,1}
E[®(x),...,x 1,X...,X,) | X, = x,]. In this way we obtain deterministically in poly-
nomial time a solution xy with ®(xy) < E[®(X)] < M, i.e., feasible. The cost of this
solution is Zy = ¢'xg = ®(xy) < M. Our goal is then to choose k£, M in order to op-
timize the bounds, i.e., we solve:

minimize M
subject to kZy+M(1— (1 —e®)") < M, (3)
k,M = 0.
Choosing k = logm and
M= (TI%Zz = O(lOgm)Zz,

we can deterministically find, using the method of conditional expectations, a feasi-
ble solution xy to the set covering problem with guarantee Zy;/Z, = O(logm). [

Remarks.
1. If we choose k =logD + ¢, we obtain that

17, logD +¢ ot

2—2 < mD—)DNC (log D + ¢),
when D is sufficiently large. We can then optimize the bound by choosing the best
c.

2. Another rounding function that also leads to an O(logm) approximation algo-

rithm is the following. If x7 > 1/logm, then set x; = 1. If x; < 1/logm, then set
x; = 1 with probability x;logm. The proof that this leads to an O(logm) approx-
imation proceeds along the same lines as before. We will next generalize this ran-
domized rounding scheme to general covering problems.

2.2. Constrained general covering problems

We consider the problem
(IP5) 1Z; = minimize Zj: LG
subject to Z;;x agx; =z by, i=1,....m.
Xj € {Oa 1}7

where a;;, b;, c; are nonnegative integers. Notice that we can assume without loss of
generality that a; < b; for all i, j, because otherwise we can replace a;; with b; and the
optimal value 1Z; will remain unchanged. Let Z; be the value of the LP relaxation.
The best known approximation bounds for the problem are due to:
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1. Hall and Hochbaum [17], generalizing earlier work of Hochbaum [18], Balas [19]
and Bar-Yehuda and Even [20], who propose a dual heuristic H for the case that
a;; are restricted to be 0 or 1 such that Zy/Z; < f, where f = max, Z;:I a;. We
refer to this bound as the row-sum bound.

2. Dobson [21] and independently Fisher and Wolsey [22], generalizing earlier work
of Johnson [11], Lovasz [13] and Chvétal [14] for the set covering problem, who
propose a greedy heuristic for the problem and prove that if d = max;¢;<,
ST ay, then Zg/Zy < H(d). If apax is the largest entry in matrix 4, then the re-
sult is essentially Zg/Z; < O(logmam,,). We refer to this bound as the column-
sum bound.

In this section we show that the generic rounding heuristic with different rounding
functions produces a stronger approximation than the row sum bound and a somewhat
weaker version of the column sum bound. In particular, using deterministic rounding
we first obtain a heuristic H with guarantee Zy/Z; < f for all covering problems (not
restricted to a;; = 0 or 1), thus generalizing all previous work regarding the row-sum
bound (in Section 3 we also propose a generic rounding heuristic, but this time using
dual information to achieve the same bound that has a much faster running time).

Moreover, using randomized rounding, we obtain a heuristic H with guarantee
Zy/Z3 < O(ams logm), thus establishing a somewhat weaker version of the col-
umn-sum bound.

2.2.1. Deterministic rounding
We apply the generic rounding heuristic but with a deterministic rounding func-
tion as follows.
1. Solve the LP relaxation replacing x; € {0,1} with 0 < x; < 1. Let x* be an opti-
mal solution.
2. If x7 > 1/f, then set x; = 1.
3. If x; < 1/f, then set x; = 0.
Hochbaum [18] proposes this heuristic for set covering problems. Let Zy be the value
of the above heuristic.

Theorem 2. The rounding heuristic produces a feasible solution that satisfies
Zy

2ogr
Z3 /

Proof. Let 4 = {j: x; > 1/f}. Let B = 4°. Clearly 4 # (), because otherwise
1
Za,-jx; < —Zaij < 1 < bi,
j f45
i.e., the LP solution would not be feasible. We first show that the rounding heuristic

produces a feasible solution. Suppose not. Then there exists a row i such that
> jea@y < b; — 1. Since the solution x* is feasible
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he Y e S < a1+ Y a

Jjed JEB jEB

-1+ Zau = za

jEB

which is a contradiction. Moreover,

chx = ch . O

JeAd j€A

2.2.2. Randomized rounding

71

We next apply the generic randomized heuristic with a rounding function similar

to the one used in remark 2 in the end of the previous subsection as follows.

1. Solve the LP relaxation replacing x; € {0,1} with 0 < x; < 1. Let x* be an opti-

mal solution.
2. Let k = 2amaclogm + 2; amax = max;; a;; let R = {j: ey <
3. If j R, then x; = 1.
If j € R, then
1 with probability Ax,
Y70 with probability 1 — kx7.

In order to analyze the heuristic we need some tail estimates for sums of indepen-
dent, but not identical random variables. Let X;, i = 1,...,n be independent random
variables. X; takes values r; with probability p;;. Let /; = min; r;;, u; = max;r;. Let

X=30%

Proposition 1.

P{X < (1-9)ElX]} < exp<_22’7(S EEE[E);D— ")2]>'

Proof. Let ¢t > 0.

P{X < (1 - 8)E[X]} = P{e™™ > e~(1-9EW]} <

from Markov’s inequality. But,

_‘X'} = Zpijef”ij — gt ( ZPU( e=tlry=1h) >>
J
<e™ exp( ZPU( ru-—l)>>7

since 1 —x < e™. Furthermore,
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Ele™] < e exp Zpij 1)+ £(ry — 1) |
J ’ 2

since e* < 1 —x+x?/2 for x > 0. Therefore,

Ele™] < exp (—tE[X,—] +§E{(X,» - l,»)z]).

Substituting to (5) we obtain

2 n

~

P{X < (1 - 0)E[X]} < exp (—5tE[X] +

E[(X,- . li)zD.

Picking 7 = 0E[X]/>7, E[(X; — 1))’] to obtain the sharpest upper bound, we prove
@. O

]

i=1

Proposition 1, which appears to be new, generalizes the tail estimates for 0-1 ran-
dom variables. In the case that X; is a 0-1 random variable, /; =0, , =1 and
E[X?] = E[X;], (4) reduces to the tail estimate obtained in [23]

PIX < (1= O)EX]} < e F2,

Similar bounds are to be found in [4].
We next analyze the generic randomized heuristic using Proposition 1.

Theorem 3. The application of the generic randomized heuristic gives a feasible solution
of value Zy such that

Zy

7 < O(amax logm).

Proof. We consider the set R = {j: kx} < 1} and its complement R°. Let ¥; be the
event that constraint i is violated and U; = V° the event that constraint i is satisfied.
Our first goal is to find an upper bound on

P{V,} :P{Zaijxj—i— Za,«j < b,}
JER JER®

If> ek @ = bi, then constraint i is satisfied. So, we assume that 3 ere @y < b — 1
Let us first notice that

Zaijx; Z bi_zdij Z l

JeR JEeRre

Then,

P{V} = P{Za,,xj +) ay < b,} = P{Zaijxj < b — Zaij}

JeR jere jeRr jER®
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< ]){:EZ: a;iX; < :g:: aUﬁ? }3

JER JER

as by — D7 epe @y < by — 30 icpe ayX; < D70k ayxX), because x* is feasible. For j € R, let
Y; = a;; with probability kx; and 0 otherwise. Notlce that >0 R E(Y}| =k}, cpayx;.
Withd=1—-1/k

P{¥} < P{Z Y; < (1-46) ZE[YA}.

Using (4) with /; = 0 we obtain

2

(k - 1)2 (Z iR aijx*) _ et

P{V;} <exp| — ! — | < e T,
( 2k X ax;

yr

since Z}ER at]xj < Amax ZjER ayx; and ZjER ayx; = 1.
Let F = (-, U: be the event that the solution xy is feasible. Then

P{F} = P{OM} > HP{M},

since P{U;|U;} = P{U;}. Thus

(k-1)2
P{F}y > (1—¢ kam) .

Moreover,

EZa)=kY cx;+ Y ¢ < k(Z e + chx;> = kZs.

JER JER® JER jER®

Since E[ZH] = E[ZH |F]P{F},
ZH|F /(1 —e éL;ax) < k/(l —e-ﬁ;)m.
For k = 2an,x logm + 2, we obtain

L < Qantogm+2) [ (1=} = Olama logm)
Z "

By derandomizing as in the proof of Theorem 1 we can find deterministically a solu-
tion xy that satisfies

Z;
" = O(amax logm). O
Z

Dobson [21] achieves a bound O(logmax; ), a;;) by analyzing a greedy heuristic.
The bound in this case is O(logm 4 logam.) as opposed to our weaker bound
O(amax logm). For ama., constant both bounds are O(log m).
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2.3. Facility location

We are given an undirected graph G = (V,E) (|V| = n) with costs ¢; > 0 for
(i,/) € E and d; = 0 for each i € V. The goal is to find a set § C V of facilities that
minimizes Y, ¢di + Y ., Minssc;. The problem is NP-hard [1]. Hochbaum [24]
presents a greedy algorithm for the problem with cost within O(logn) of the opti-
mum. Since the problem can be formulated as a set covering problem (this is a non-
standard formulation) involving O(n?) rows, this is not a surprise. Here we show that
the O(logn) can be obtained directly from the standard formulation of this problem.

In this section we show that the generic randomized heuristic returns a solution
with cost within O(logn) of the optimum cost, i.e., it performs as well as any heur-
istic can (unless P = NP). We start with the classical strong integer programming
formulation of the problem. Let y; = 1 if we locate a facility at node { € V, 0 other-
wise. Let x;; = 1 if customer i € V is assigned to facility j. Then, the problem can be
formulated as follows.

(IP4) IZ4 = minimize Z(l,j) cE CiiXij + Zje ” djyj

subjectto  x; <y, (i,j)€E, jeV

n o
g 1 X =1, i=1,...,n,

x;, v € {0,1}.

Let Z; be the value of the LP relaxation. The randomized heuristic is as follows:
1. Solve the LP relaxation and find the solution x};, y;.
2. Round as follows:

Ply=1}=1-(1-x), k=logn,
1—(1—x)*
P{x;=1]y; =0} =0.

P{X,jzllyjzl}:

In this way the constraints x;; < y; are always satisfied.
Let xg be the solution generated by this algorithm and Zy its cost. Notice that

P{x;=1}=1-(1-x;)* and P{ (x = 1} = H(l -1 —x;,.)").
j j
We bound the performance of the heuristic as follows.

Theorem 4.

E|Zu|xy is feasible] < logn
Z4 = (1 — 1/1’1)” '

By derandomizing the randomized scheme we can find in polynomial time a feasible so-
lution H such that
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Zn < logn .
Z4 (1 - l/l’l)n

Proof. Let 4; be the event that customer i is not assigned after the randomization. Let
U, = 4% Let F =), U; be the event that the solution xy is feasible. Then

P{d4;} :P{Zj:xij = 0} :P{ﬂxij = 0} = HP{XU‘ = O} = H(l —x;‘j)k

jev Jev jev
ket _
< | Ie i ek

jev

Therefore, as before

P{F} :P{ﬁu,} H (1-P{4;}) = (1 —e ).

=1

Moreover,
EZal = > cy(1-(1=x)+ > d(1 = (1~ y)") < kzs.
(ij)eE Jjev
Therefore,

E[Zy] = E[Zu | FIP{F} > E[Zu |F|(1 — ¢ *)",
which implies that
kZ4
(1—e#)"
Choosing k = logn, we obtain that
E[Zy | F] < logn
Zy (=Y

E[Zy|F] <

= O(logn).

The derandomization works exactly as in Theorem 1. []

In order to derandomize the above procedure, we introduce the following poten-
tial function:

OX,7)= D cuXy+ D dY +MZ H{4:(X
(i,))eE JjeV
where

HA4X)} =

1, Z, Xy =0,
0, otherwise,

and M is a large constant to be chosen later. Proceeding in exactly the same way as in
the set covering problem we obtain that if we pick £ = logn + logd and
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log é
= logntlogd,
13
we can deterministically find using the method of conditional expectations a feasible
solution xy, yy to the facility location problem with guarantee Zy/Z p = O(logn).

O

3. Deterministic rounding through duality theory

We refer again to the general covering problem
(IPs) 1Zs = minimize cx
subject to Ax = b,
xeX,

where 4, b, ¢ have nonnegative integer entries and X is either Z7 or {0,1}".

We describe in this section a generic rounding heuristic that uses information
from the dual of the LP relaxation of the above problem. In order to describe the
dual heuristic we examine first the simpler case X = Z| and consider the linear pro-
gramming relaxation

(LPs) Zs = minimize c¢'x
subject to  Ax = b,
x = 0,
and its dual
(Ds) Zs = maximize y'b

subject to  y4 < c,
y = 0.

The dual heuristic is as follows.

A generic dual heuristic:

1. Find an optimal solution x*,»* of the LP relaxation (LPs) and its dual (Ds), re-
spectively.

2. If the jth constraint in the dual problem is tight, i.e., (y*4); = ¢;, then x; = [x}].
Otherwise, x; = 0.

Hochbaum [18] proposed the heuristic for the case of 4 having 0-1 entries and b, ¢

are arbitrary nonnegative integers. To connect this generic heuristic with the rando-

mized rounding heuristic of the previous section, let us observe that this dual heur-

istic can also be interpreted as a deterministic rounding heuristic as follows: If x*, y*

is a pair of complementary optimal solutions of (LPs) and (Ds), then the heuristic is

clearly equivalent to the following deterministic rounding heuristic:

1. Find an optimal solution x*, y* for problems (LPs) and (Ds).

2. Let x; = [x;] be the solution proposed by the heuristic.
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Critical to our analysis is an understanding of the structure of an optimal dual solu-
tion. In the dual heuristic we use a particular dual optimal solution that satisfies cer-
tain structural properties. In Sections 3.1 and 3.2 we apply the dual heuristic to
unconstrained (X = Z7) and constrained (X = {0,1}") covering problems respec-
tively. In Section 3.3 we show that the dual heuristic leads to an O(n*) approxima-
tion algorithm that works without solving the LP relaxation.

3.1. Unconstrained general covering problems

We first apply the generic dual heuristic for the case X =Z7]. Let
f=max; > a; > 2, otherwise (IPs) is trivial. We apply the generic dual heuristic
to (IPs) starting with an optimal solution x*,y*. Let Zy be the value of the heuristic.

Theorem 5. The dual heuristic produces a solution with

Zn
— < 1.
7 S/t

Proof. Let x* and y* be an optimal primal-dual pair for (LPs) and (Ds). The heuristic
solution x; = [x7] is feasible, since

n n n
QiX; = ai}»]—x}.] = aijxj = b,’.
Jj=1 =1 Jj=I1

Let K = {j: x; > 0}. Then,
Iy = chfxﬂ = Z( aij)’;) X1,
jeK jek \ i=1

since ¢; = 3., @y} for j € K by complementary slackness. Since [x;] < x; + 1 and
> ek @iX; > b; implies that y; = 0 by complementarity we obtain

Zy < zm: (bi + 2:«’1;']‘))7,fk = zm:biﬁ + i Z ayy;
=1

i—1 jEK i=1 jeK

SZs+fY W <Zs+fY by =(f+1)Z,
i=1 i=1
since b, = 1. [
3.2. Constrained general covering problems

In this section we consider the case X = {0, 1}", which we call the constrained cov-
ering program. We denote by IZ¢ and by Z; the optimal objective function value of
this integer program and its linear relaxation, respectively. We prove that if we apply
the generic dual heuristic, with a particular dual optimal solution, we obtain a fea-
sible solution with
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Zn <f26»

where, as before, f = max; y_7_, a;. The analysis is considerably more complicated,

but it leads to an O(n?) approximation algorithm. This algorithm can be seen as the
generalization of the algorithms of Goemans and Williamson [7], Williamson et al.
[8] and Goemans et al. [9] for the cut covering problem (see Section 4).

The linear programming dual of the problem is:

(Dg) Z¢ = maximize Z:n:l by, — Z::l Zj
m

subject to Zi:l ayi—z; < ¢, j=1,...,n,
Vi = 07 Zj = 0.

If (y,z) is a dual feasible solution we let

K(y,Z) = {j:Zj > 0}7

A(y,z) = {i: Z a;j :bi}a

JeK(y.2)

B(y,z) = {i: Z a; < bz}a
jeK(y2)

C(y,Z) - {l Z a;j > b,}
JeK ()

We first show that there exists an optimal dual solution with particular properties.

Proposition 2. There exists an optimal dual (y*,z*) solution with the following two
properties:
1. Property 1:

Either z; = 0 forall j or y; =0 forall i € A(y",z") UC(y",z"). (6)

2. Property 2:
Y on< Y -y ™
JEK(y*2*) i€B(y* ,z*)

Proof. We prove (7) first. Let (y,z) be an optimal dual solution. Note that if
J €K(y,z), then by complementarity, x; = 1. From complementary slackness
¥y =0 for all i € C(y,z), since for all i € C(y,z),

n 7
E al-jxj = E a;x; = a,-j > b,‘.
7=t JeK(y.z) JEK(y.2)

If y; =0 for all i € A(y,z) then (7) of the proposition holds with y* = y,z* = z. Sup-
pose then, there exists a p € A(y,z) such that y, > 0. Let
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0= min{yp, min Z—’}

JEK(p2):ap>0 Ap;
Notice that 8 > 0. We define a new dual solution (3/,2') as follows:

, Vi, l#pa , Zjy ]¢K(yvz)7
Yi = z
yi_07 l:p7

Zj—‘apje, ]eK(y,Z)

The process by which we obtain (y/,2) from (y,z) we call reduction. We show first
that the solution (3/,7) is dual feasible:
By the definition of 6, )/ > 0, z; > 0. Moreover, if j € K (r,2)

m m m
E ayy, — 2, = g ayy; — Ayl — z; + a0 = E ayy — z; < ¢
=1 =1

i=1

If j € K(y,z), then,

m m

! I3
E aiy; _Zj: E a,»jyi—apjﬁ—zj < Cj.
i=1 =1

The new dual feasible solution (3, z') is still optimal, because

n

Z;biyg - Z;z; = Zb,«y,- — b0 — Z;zj + Z)a,,,e = Zbiy,- -z,
i= Jj= i= j= i=

Kz =

since p € A(y, z).

Each time we perform a reduction operation either y, = 0 or z; = 0 for some j
such that @, > 0. Therefore, by repeating the reduction operation either we find
an optimal dual solution that has z; = 0 for all j or y; = 0 for all i € A(y*,z"). In ad-
dition, since (y*,z*) is optimal, it should satisfy complementary slackness, i.e., y; =0
for all i € C(y*,z*). Therefore, we have proved (6).

We now proceed to prove (7) by showing

* *
S g Y Y ant
JEK(y*2*) i€B(y* z*) jeK(y* z*)

Notice that the above inequality implies (7), since for each i€ B(y*,z*),
> jekiy ) @y < bi— 1.

If y* =0, z* = 0 then (7) is satisfied. Since y* = 0 and z; > 0 cannot be optimal in
the dual (notice that y = 0,z = 0 is feasible in the dual), there exists a y; > 0 for some
p € B(y*,z*). We apply a reduction operation again, i.e., construct a dual solution:

, y?v i#pa Z;a ng(V*,Z*%
yi = j powed
y: - 6; i=p, / Z; - apj07 JE K(y*?Z*)a

where 0 = min(y;,minjeK(y*yz*): ay>0Z; /a,;) > 0. We first observe that, as before, the
new solution is dual feasible (the only difference with the previous derivation, how-
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ever, is that the new solution is not necessarily optimal, since p € B(y*,z*) rather than

p Ay ,z)).
Given a dual feasible solution (y,z) we define

L(y,Z) = Z zj and R(y,Z) = Z Z aijyi.
JEK(* 2*) ieB(y* 2*) jeK(y*z*)

We then want to show that L(y*,z*) < R(y*,z*). The second important observation
is that after a reduction operation this inequality is preserved, i.c.,

L(y*,2*) < R(*,z*) if and only if L(,Z) < R(Y,Z).

The reason is that

L(y,Z) = Z z}: Z (z;f—aij): Z z;—0 Z ap,.

JeK{y* 2) JeK(y*z*) JEK (%) JEK(* 2*)
Moreover,
RY\ D)= > > api—0 ) ay
i€B(y* z*) jeK(y* z*) JEK(y*,z*)

Therefore, since both the left and the right hand side of the inequality decrease by the
same amount the inequality is preserved.

Each time we perform a reduction operation either y, =0 or z; = 0 for some j
such that a, > 0. Therefore, by repeating the reduction operation ¢ times, either
we find a dual solution that has z; = 0 for all j or y; = 0 for all i. In the first case
(z; = 0 for all j), clearly 0 = L(y',z') < R(),2') and therefore, L(y*,2*) < R(*,2").

In the second case (y/ = 0 for all /) we show that the solution (y*,z* —z') is also
dual feasible contradicting the optimality of (y*,z*).

Observe that the rth time we perform the reduction operation the solution is up-
dated as follows: ()° =y*, 2 =z*); y =y ' —vland 27 =7~! — w'!, where

0, i # pr, v 0, JEKY Lz,
aprjﬂr, jeK(’)/Ll,Zril).

If y' =0, thenyozzr ov and 2% — 2 = S LW
For j ¢ K(y',Z'), 2, = 0 and then

Fo__
v, =

y;k_er’ i=py, ’

§;a,,y, (@ -2) <e,

since (3°,2°%) is dual feasible.
Forj € K(yt’zt)’

Z a,Jyl z - z Z

since j € K(3,2'), then j € K(y',z") for r <t — 1.
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Therefore, this case cannot happen, otherwise (y*,z*) is not optimal. This proves
(. O

Notice, that the proof above is constructive. Starting with an arbitrary optimal
dual solution found by a polynomial LP algorithm, we apply the reduction operation
at most min(m, n) times to arrive at a dual solution that satisfies the properties (6)
and (7). We then apply the generic dual heuristic to this particular optimal dual so-
lution to obtain a feasible solution xy with value Zy.

Theorem 6. If we run the generic dual heuristic with an optimal dual solution (y*,z*)
satisfying (6) and (7),

Zy < fZs.
Proof. We showed in Proposition 2 that there exists an optimal dual solution (y*,z*)

satisfying (6) and (7). Moreover, we can construct such a solution in polynomial time
starting with an arbitrary optimal dual solution. Under the generic dual heuristic

{ LY ey -2 =c
0 if Z:'l:l ai]-y;‘ —- Z; < Cj.

If x* is an optimal solution to the LP relaxation, which is complementary to (y*,z*),
then

Xj

n n

E xj = E ayx; = b,

=1 =1

and therefore, the solution xy is feasible.
Let K = { JrYmayt -z = cj} The value of the heuristic is

Zn —ch ZZa,jyl z:z;k
Jjek jeK i= jek
If z; = 0 for all j, then

Zy = ZZaUy, < ny, Y by =1 Z.
i=1

jeK i=1

Ifyf =0foralli€A(y",z) UCH",2*) and 3, cxr 2 < D g (bi — 1)y7, then

m m
=Y ap- 3 z<sr Y
JEK ieB(y* z*) JEK(y* z*) i€B(y* z*)
m
<f (Zbiy;* - > Z;> = f Zs.
i=1 JeK(y*.z%)

In both cases Zy < fZs. [
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3.3. Algorithmic implications of the generic dual heuristic

The generic dual heuristic does not provide a better guarantee than the determi-
nistic rounding heuristic of Section 2.2. Moreover, the analysis is considerably more
complicated. The importance of the dual heuristic lies not so much in the guarantee
it produces but rather in its proof. It suggests how a fast approximation algorithm
for the constrained covering problem with performance guarantee f can be designed.
Specifically, it is sufficient to construct a dual feasible solution (y, z) with the follow-
ing properties:

1. The solution obtained by letting x; = 1 when Y| a;;3; — z; = ¢; is primal feasible.
2. 3z < (=

The proof of Proposition 2 hints at how such a dual solution is to be constructed; by
working the reduction process in reverse. We now describe an O(n?) approximation
algorithm designed along these lines. Note that Hall and Hochbaum [17] propose an
O(n?) approximation algorithm for the special case of the problem with a; =0, 1.
Our algorithm is different.

The algorithm works in phases (very much in the spirit of Williamson et al. [8]).
The output of phase ¢ is a dual feasible solution (3/,z') and a vector x’. Each phase
consists of a greedy type set covering algorithm. In the first phase, a primal solution,
x! that covers every row at least once is generated. Any column j such that x} =1lis
deleted as well as any row i such that Z./. a,-jx/l. > b;. This ensures that no column is
ever selected twice and constraints that are satisfied are ignored. In the second phase
we generate a primal solution x? using the remaining columns that covers all remain-
ing rows at least once. At the end of this phase we delete all columns j such that
x; =1 and all rows i such that ) a;x? > b; — 3 ayx;. In general, at the end of
the ¢th phase we generate a solution x' such that:

n t—1 n
dapi > 1 ifandonlyif b— Y Y apd > 1.
j=1 pr=1 j=1
Hence, if the algorithm terminates after k¥ phases, the vector x = Zﬁzl xP will be pri-
mal feasible.

The input to phase ¢+ 1 is:

1. I(s) = {i 2 by — Z;Zl S agxl = 1} (the set of rows not yet completely covered).

2. J(t) = {j: £ =0 Vp < t} (the set of variables not yet set to 1, i.e., the remaining
columns).

3. (,7).

Given [(¢), J(¢) and (3#,2') from phase ¢, then phase ¢ + 1 is as follows.

PHASE ¢ + 1

Step 1: For all jeJ(r) (set of columns to be picked in this phase) set
Sj = {l I e ](t),d,‘j > O}, g(Sj) = ZiGSj Aijs Kt+1 = (Z), Vi = 07 i€ I(t), W; = ¢;—
er'nzl alfy;’ JE€ J(t)'
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Step 2: Let 6 = min;e,y w;/g(S;); r = argmin,.,,w;/g(S;) (select the column with
smallest reduced cost to column sum ratio).

Step 3: Set K" = K"V U {r}; 3y =0, i € S, (selection of y; in this manner ensures
that ). ¢ ayy: = w,).

Step 4: Set w; =w; = > .y aiyi, j € J(¢) (update the reduced cost of column j);
S; = 8;\ S, (remove rows that are covered; updating the reduced costs in this way
and the choice of § ensure that at termination, } . ¢ a3 < w;¥j € J(t)).

Step 5: If g1 S; = 1(2), (every remaining row covered at least once) go to step 6.
Otherwise go to step 2.

Step 61 If je K™, set xH' =1; otherwise x/*'=0; y*'=yl+y, icl();
2 = max(3 eyt —¢;,0), j=1,...,n

Notice that the algorithm will terminate after at most » phases, i.e., every primal
variable is set to 1. Let the algorithm terminate after phase p. From the last part of
step 6, (3, 2”) will be dual feasible. We show next that the vector x = 3%, x* satisfies
the complementary slackness condition, x, = 1 if > @) — 2§ = 4. Now x; = 1
implies that at the end of some phase, ¢+ 1, say, x;"' = 1. Observe that at end of
phase ¢+ 1:

Zaijyi <w;, JjeJ(), Zaijyi =w;, JjEK™,
i€S; ieS;
by steps 2 and 4. So, x}“ = lonlyif 3>, ¢ a;3 = wi. By the definition of w; and y"*',
this implies that x/*! = 1 only if 377" a;»/"" = ¢;. Hence, if x/"' = 1, constraint k of
the dual is tight with respect to (3**!,2z"*1). From Step 6, once a constraint becomes
tight, it remains tight, i.e., Y awyf — 2, = ¢, ¥ = t + L.
Finally we use induction to show that

m

Zz" > (b — 1)1

i=1

At the end of phase 1, z} = 0. So, 31z} < Y (b — 1)y}
Suppose that >, 2 < >, (b — 1)y} Notice that if z{*' > 0, then

t+1 1 A1 t
E :au E :a’J E Ay — ( E :aijyi>'

iel{t) i=1

]

Hence from step 6, j € |J, . K", (ie., x; =1 for some r < #); because if j € J(t),
then 3, ay — (¢ = D20 al) = Dien @i — w; < 0 contradicting "' > 0.
Hence,

Zztﬂ Z Zt+1< Z Zal]yt+ Z Z

j=1 JEU, < 1K JEU, < (K7 i€l(t) JEU, < (K"

Z Za,ﬂ/ﬁ—Zb - )y

JEU < K i€l(t)
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m

< S Ot S Dy =3

iel(t) i=1

Remark. The primal rounding heuristic of Section 2.2 produces a much shorter proof
of the bound. The heuristic, however, depends on the solution of the LP relaxation.
In contrast the dual heuristic leads to an O(n?) non LP-based algorithm.

4. Cut covering problems

Let G= (V,E), |V| = n be an undirected graph. Let f: 2" — Z, be a given set
function. Let 6(S) ={e= (i,j) € E|i€ S, j&€ V' \S}. In this section we consider
the following family of discrete optimization problems, which belongs to the class
of covering problems:

(IP/) 1Z; = minimize ZeeEcexe

subject to Ze@(s)xe = f(S) VS,
x. €KX,

where X is either {0,1} or Z,. In Table 1 we list classical combinatorial problems
formulated using the cutset formulation (IP,) (see [7]).

Let Z; be the value of the LP relaxation. We first note that if the set function f is
arbitrary, then the guarantees of the previous cannot be further improved. Even if
we restrict our attention to set functions f taking values in {0,1}, IZ,/Z, = Q(n) as
can be seen from the following example: f{S) = 1 for all S such that |S| = n/2 and

Table 1

Some classical problems encompassed using a cutset formulation

Problem F(S)

Spanning tree [ forall S#0,V

Shortest path LiSn{s, =1

Steiner tree Lif SNT #0,T

Generalized Steiner tree LifSNT: #0,T;,i=1,...,k
Nonbipartite matching Lif [S]=2k+1

T-join Lif |ISNT|=2k+1

b-matching problem (3}~ b(i) = 2k) { 11S] 22, S b() =2k +1,

b(i) S ={i} V\{i}.
Network survivability MaXes(s) Fe, Ve 20
k-connected graph kforalls#0,V
Tree partitioning Lif | S|<k,|S|zn—k
Capacitated tree )

{ ZZ—'Qid—l scv,
di
2 QT 0eS
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c.=1. Then since x,=4/n* is a feasible solution to the LP relaxation
Zr < (4/n*) (n(n—1)/2) < 2. However, every integral solution should have at least
n/2 edges implying that IZ, > n/2, and therefore the ratio grows linearly with n. No-
tice that a bound of O(n) follows immediately from the column sum bound,
(O(log 2™)).

If we impose, however, some conditions on f we can approximate (IP,) signifi-
cantly better. In particular if f satisfies f(0)=0, f(S)=f(V —S) and
f(AUB) < max{f(4),f(B)}, when ANB =0 (proper functions) Goemans and
Williamson [7] propose a dual heuristic with vaiue Zy such that

7<)
— < 2{1—-—],
Zs 4]

where 4 = {i € V: f({i}) = 1}. These results are further generalized in [8,9] for
more general set functions. For f being proper, taking arbitrary integer values
and X = {0, 1}, the bound is extended in [9] to

Zn <zﬁ"if1—0(10 Fon)
Zf ~= i:li_ gmax-

The technique used in these papers is the construction of a dual feasible solution that
in addition to the properties in Proposition 2 has further special properties that fol-
low from the particular properties of f and then the use of the idea of the dual heur-
istic of the previous section (when the dual constraint is tight the corresponding
primal variable is set to 1). In this way these results can be seen as an application
of the dual heuristic.

A natural idea is to apply the randomized heuristic of Section 2. Our goal is to
show that the application of the randomized heuristic gives rise: (a) to an interesting,
we believe, extension of classical random graph theory and (b) to a connection of
random graphs to approximability.

Table 2

Thresholds properties for the uniform random graph model

Graph property critical p

Connectivity logn + ¢,
n

Graph has a matching logn + ¢
2n

Hamiltonicity logn + log logn + 2¢,

n

k-connectivity logn + (k — 1)loglogn + ¢,

n
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4.1. Potential applications of random graphs in approximation algorithms

The theory of random graphs has developed independently from the study of ap-
proximation algorithms in trying to understand the properties of randomly gener-
ated graphs. The most widely used model (see for example [25]) involves a graph
G, , on n nodes, where each edge is present independently with the same probability
p-. The typical theorem proved under this model (for example [25]) is of the threshold
type:

Let 4 be a graph property; let p = (g(n) + ¢,)/n.

1, Cp — 00,
lim P{G,, has property A} =¢ e, ¢, —c,
e 0, C, — —00.

As examples, we list some important properties together with the corresponding cri-
tical probabilities p.

Let us attempt to apply the generic randomized heuristic for the class of problems
(IPs). We consider the LP relaxation and find the optimal solution x*. Let

pe=Plx,=1}=1-(1-x,)9,

where &, will be chosen later. In this way we obtain a random graph, in which each
edge e has a probability p, of being present. The properties of the random graph un-
der this nonuniform random model have not been extensively studied in the theory of
random graphs. We conjecture an intimate connection between properties of random
graphs and approximation algorithms.

Conjecture 1. If a graph property A can be modeled using a cutset formulation (IPy) for
some set function [ and there is a critical probability p = (g(n) + c,)/n for which the
random graph G, , (under the uniform model) has property A, then the application of
the generic randomized heuristic with P{x, = 1} =1 — (1 — x,)*" gives a solution xy
such that

Zu

@‘<0@M»

Alon [26] proved the conjecture for f(S) = 1, i.e., for the minimum spanning tree.
We use his result to propose an O(logn) algorithm for a network design problem.

For example, suppose we solve the LP relaxation of the k-connected problem
(f(S) = k). The corresponding critical probability is p = (logn + (k — 1) loglogn+

¢,)/n. Then, the conjecture would imply that there exists a solution Zy such that
Z
Z—;I < O(logn).

We next use the result of Alon [26] result to propose a log n approximation algorithm
for a special network design problem.
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4.2. A randomized approximation for a network design problem

In this section we consider the application of the generic randomized heuristic to a
generic network design problem, that can be viewed as a variation of the shared fixed
cost problem first considered by Rhys [27]. We are given a graph G = (V,E) and we
want to select edges at cost d,, so that we can construct m trees each with costs cf,

where k denotes the k tree (k = 1,...,m). The problem can be formulated as follows.
1Z; = minimize Z ixk 4 Z d.y.
ecE eck
subject to Zx’e‘ =1, k=1,....m, SCV,
e€d(S)
¥ <y, e€E k=1,...,m, Xes Ve € {0,1}.

We apply the randomized heuristic as follows:
1. Solve the LP relaxation. Let x*, y* be the optimal solution.

2. Let k = logn.
Plr.=1}=1-(1-»)5
1—(1-x)f
P{x§=1|ye:1}:——(—xe)k.
I=(1-3»)

P{x];:”ye:()}:()

Alon [26] proved Conjecture 1, for the case of f(S) = 1, i.e., he showed that if x* is a
feasible solution to P, with f(S) =1 and P{x, = 1} =1 — (1 —x?)*"*®", then with
probability at least 1 — 1/n” the graph is connected. Using this result, it is immediate
that the value Zy returned by the randomized heuristic satisfies:

LT oog),
Z;
k
P{F} > 1-—.

5. Concluding remarks

We presented two methods to construct approximation algorithms for covering pro-
blems:
e Randomized rounding with nonlinear rounding functions and
e Deterministic rounding using dual information.
We saw that these two approximation methods match the best known bounds for
several covering problems.

Related to the question that motivated our research, whether there exists a sys-
tematic way to construct approximation algorithms, we believe that these two algo-
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rithmic ideas provide a unification of methods for approximating discrete optimiza-
tion problems.

We close the paper with a summary of research directions-conjectures that, we be-
lieve, will enhance our understanding of approximation methods:

1.

Related to the question of which problems can be approximated better than
others, we believe that as far as min—sum (as opposed to min—-max) problems,
we believe that only covering problems can be approximated within a O(logn)
factor. Although this is not a formal mathematical statement we do not know
of any example of a min—sum problem with a logarithmic or a sublogarithmic
guarantee that cannot be formulated as a covering problem.

The randomized rounding heuristic uses the nonlinear rounding function f(x).
While we specified several rounding functions, we did not propose a systematic
method to construct the rounding function. The problem of finding the best
rounding function f(x) in order to minimize E[Zy(f)] reduces to a calculus of var-
iations problem, which seems to be difficult to solve at its full generality.

. Investigation of Conjecture 1 seems interesting as an extension of random graph

theory; a first step in this direction was taken by Alon [26]. Applications to ap-
proximability could also be interesting to explore.
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