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Abstract 

In the last 25 years approximation algorithms for discrete optimization problems have been 
in the center of research in the fields of mathematical programming and computer science. Re- 
cent results from computer science have identified barriers to the degree of approximability of 
discrete optimization problems unless P -- NP. As a result, as far as negative results are con- 
cerned a unifying picture is emerging. On the other hand, as far as particular approximation 
algorithms for different problems are concerned, the picture is not very clear. Different algo- 
rithms work for different problems and the insights gained from a successful analysis of a par- 
ticular problem rarely transfer to another. 

Our goal in this paper is to present a framework for the approximation of a class of integer 
programming problems (covering problems) through generic heuristics all based on rounding 
(deterministic using primal and dual information or randomized but with nonlinear rounding 
functions) of the optimal solution of a linear programming (LP) relaxation. We apply these 
generic heuristics to obtain in a systematic way many known as well as new results for the 
set covering, facility location, general covering, network design and cut covering problems. 
© 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V. 

1. Introduction 

Given  our  inabi l i ty  to efficiently solve several  discrete op t imiza t ion  p rob lems  (in 

pa r t i cu la r  N P - h a r d  p rob lems)  exactly,  it is na tu ra l  to ask  whether  it is poss ible  to 

a p p r o x i m a t e  them. We will focus on min imiza t ion  p rob lems ,  bu t  a para l le l  theory  

can be deve loped  for  max imiza t ion  p rob lems  (see for  example  [1]). A l g o r i t h m  A con-  

st i tutes an a p p r o x i m a t i o n  a lgor i thm for  min imiza t ion  p r o b l e m  I I  wi th  guaran tee  

f ( n ) ,  if  for  each instance I o f  size n o f  17, A l g o r i t h m  A runs  in po lynomia l  t ime in 
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n and returns a value ZA (I) such that ZA (I) <<, f(n)Z* (I), where Z* (I) is the optimum 
solution value for instance I. The obvious question is: Is it possible to approximate 
optimization problems, whose decision version is in NP within a certain guarantee f (n )?  

Recent progress in interactive proof systems [2,3] showed that there are classes of 
problems which cannot be approximated with a guarantee better than f (n )  unless 
P = NP. 

In the last 25 years there have been several approximation algorithms proposed 
for NP-hard problems. Unfortunately, the proposed algorithms are problem specific. 
Typically, a particular approximation algorithm works for a specific problem and 
the insights gained from a successful analysis of a particular problem rarely transfer 
to another. 

As a result, in our opinion, the following questions have not yet received satisfac- 
tory answers: 
1. What is the reason that certain problems can be approximated better than others? 
2. Is there a systematic way to generate good (in particular best possible) approxima- 

tion algorithms? 
In the present paper we attempt to provide some insights to these questions by 

focusing on general covering problems of the type: 

minimize cx 

subject to Ax ~ b, (1) 

x c X ,  

where the entries in A, b, c are nonnegative integers and the set X is either {0, 1}" or 
Z+. There is a very large collection of discrete optimization problems that have cov- 
ering formulations (see Sections 2 5). 
Our contributions in this paper are as follows. 
1. We propose and analyze a randomized rounding heuristic with a nonlinear 

rounding function. With the exception of the work of Raghavan and Thompson 
[4], and Srivastav and Stangier [5,6] most applications of randomized rounding 
have been to problems in which all 0 1 solutions to an integer programming pro- 
blem are feasible. The papers just mentioned used linear rounding functions to 
obtain approximation results for special cases of the set packing problem. We ex- 
pand the power of the method by considering nonlinear rounding functions as 
well as applications of the method to problems, in which there is a probability 
that the rounded solution is infeasible. We apply the heuristic to set covering, fa- 
cility location, network design and general covering problems. We show that our 
method matches the best possible approximation bounds for all these problems. 

2. Motivated by the problem of covering cuts in a graph that encompasses several 
important graph problems (the minimum spanning tree, connectivity problems, 
the steiner tree problem, the matching problem, etc.) we identify an interesting 
connection between the analysis of approximation algorithms and random graph 
theory. In particular, we formulate a natural general conjecture that could have 
interesting applications in approximation algorithms. 
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3. We propose and analyze a generalization of a well known generic dual heuristic 
for general covering problems. Our analysis in this part of the paper illustrates 
the importance to the design of  a good approximation algorithm for a discrete op- 
timization problem of a deep understanding of  the structural properties of  its L P  re- 
laxation. Our method can be seen as an extension of the work of Goemans and 
Williamson [7], Williamson et al. [8] and Goemans et al. [9] in the approximability 
of cut covering problems to general covering problems. 
The outline of the paper is as follows: In Section 2, we propose our first generic 

heuristic that uses randomization and apply it to the following problems: set cover- 
ing, facility location and arbitrary covering problems. In Section 3, we propose our 
second generic heuristic that uses information from the LP dual problem and apply it 
to general covering problems obtaining the best known guarantee for the problem. 
In Section 4, we examine a special covering problem involving covering cuts in an 
undirected graph. We identify connections between the design of approximation al- 
gorithms for this problem and the theory of random graphs with nonuniform prob- 
abilities. As an application, we use the randomized heuristic in a particular network 
design problem. The last section contains some discussion of open problems. 

2. Randomized rounding with nonlinear rounding functions 

In this section we study discrete optimization problems for which we have an in- 
teger programming formulation: 

(IP1) IZl = minimize 

subject to 

cx 

Ax >~ b, 

x c  {0,1} n, 
(2) 

where the entries in A, b, c are nonnegative integers. We consider its LP relaxation: 

(LP1) Zl = minimize cx 

subject to Ax >~ b, 

xE {0, 1]". 

Throughout the paper we denote with IZ (Z) the value of the optimal IP (LP) solu- 
tion. We propose the following general randomized scheme to approximate Problem 
(IP1): 

A generic randomized heuristic 
1. Solve the LP relaxation (LP1) obtaining the solution x*. 

2. Round the solution as follows: P{xj = 1 } = f(x~). 
3. Use a derandomization procedure to find a deterministic approximation. 
Randomized rounding heuristics were first proposed by Raghavan and Thompson 
[4] to approximate a VLSI design problem (a min max-type of problem). They used 
f ( x )  = x to round. Yannakakis [10] interprets an algorithm of Johnson [11] for 
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MAXSAT as a randomized rounding heuristic with a linear rounding function 
(f(x) = x) and Goemans and Williamson [12] use nonlinear rounding functions 
f(x) to round, matching the best known guarantee (obtained in [10] using maximum 
flow techniques) of 3 for MAXSAT. The natural questions that arise in the context 
of the generic randomized heuristic are: 
1. How does one choose the rounding function f (x)?  
2. Is it possible to find an integer feasible solution always? 
3. How does the cost of the obtained solution compare with that of the LP relaxa- 

tion? 
4. How does one derandomize? 
Our plan is to address these issues with respect to particular examples. 

2.1. The set covering problem 

Given a set N = {1 , . . . ,  n}, weights cj /> 0 f o r j  E N and a family ofm sets Si _c N, 
find a set S C N such that IS fq Si[ ~> 1, such that ~ j c s  @ is minimized. In order to 
formulate the problem we let aij = 1 if j E Si. Then the set covering problem can 
be formulated as follows: 

(IP2) IZ2 = minimize ~-'~_1 CjXj 

subject to j=laijxJ >~ 1, i =  1 , . . . ,m,  

(0, 1}. 

Lund and Yannakakis [3] proved that the set covering problem cannot be ap- 
proximated within a factor smaller than O(logm) unless P = NP, i.e., if there exists 
a polynomial time algorithm within ¼1ogre from the optimal value, then P = NP. 
Johnson [11] and Lovfisz [13] propose a greedy heuristic with value Z~ for the pro- 
blem with cj = 1, such that 

g~ 
<~ H(D) <~ l o g D + l ,  

IZ2 

where H(D) = ~iD=a 1/i and D is the maximum columns sum. Chvfital [14] extends 
the heuristic for the case of general cj ~> 0 proving the same guarantee. Bronniman 
and Goodrich [15] describe an approximation algorithm with a bound that is a loga- 
rithmic function of the VC dimension of the constraint matrix A = {ai;}. 

Applying the randomized heuristic, we solve the LP relaxation and find the solu- 
tion x} with value Z2. We round as follows: 

P { x j = l } = f ( x ; ) =  1 - ( 1 - x ~ )  k, k = l o g D ,  

where D = maxj [Di], with Dj = {i: j E Si}. The interpretation is that we flip a coin 
that has probability x} of giving heads, k times. If, in any of these k flips the coin 
shows heads, we round xj to one, otherwise we round to zero. Let XH be the solution 
vector given by the heuristic (notice that the solution is not always feasible). Let Zn 
be the cost of the proposed solution. 
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Theorem l .  

E[ZnIxH is feasible] logD 
Z2 (1 - 1/D) D" 

In particular, 

IZ2 logD ~< 
22 (1 - 1/D) D 

By derandomizing the randomized scheme we can find in polynomial time a feasible so- 
lution H such that 

ZH log m 
Z2 (1 - l / m )  m" 

Proof. Let Vii be the event that constraint i is violated by XH. Let/-7,. be the event that 
m constraint i is satisfied. Let F = ~=~ U~ be the event that the solution xn is feasible. 

Then 

< H e - ~  = e k£Jcsi~ = e-k£y=lai/x) ~ e k. 
jE& 

Notice also that 

: 0}  = H ( 1  - x ~ )  k 
jcsi 

P{V~nV/}= H P{x/=O} H P{x/=O} U P{x/=O} ~>P{V/}P{Vj}. 
jcSi\S j jESj\Si jcSiNSj 

Therefore, 

P{U~ N Uj} = 1 - P{V~} - P{Vj} +P{V/A V/} 

>~ 1 - P{Vi} - P{V/} +P{V,.}P{V/} = P{U,.}P{Uj), 

which is intuitively obvious, since P{U,.IU/} >~ P{U,}. In general, 

I7,<<. 
Moreover, 

" " P { F [ x  i = 1 } P { x / =  1 }. E[ZH IF] = ~ c f { x j  = 1IF} = ~ cg ~-{F]- 
j = l  j = l  

Let D~ be the complement of D/. Then 

P{FIx / = 1} P { A , ~  U,} 1 
- ~< 

P{F} p m {N,=, P{nicz,, u,}' 
p m 

because {n,=l ui} ~> P{nicq u~}P{N,~j u,.}. Since 
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we obtain that  

n 

E[ZH IF] ~< ~ c j ( 1  - e-k)-lDJP(1 -- (l --x)) k) 
j - I  

n 

~< (1 - e  ~) D ~ c j ( 1  - (1 - kx~)) 
j - -1  

~ ,_  kz2 
= k(1 - e - k )  -~ cjxj (1 2~_k)D' 

j = l  

where D = maxj IDjl. Choosing k = logD, we obtain that  

logD O(logD)Z2. E[Zn IF] ~< (~ _ ~---~zfZ2 = 

This implies that  there exists a feasible solution with cost at most  O(logD)Z=, prov- 
ing that: 

IZ2 
~< O(logD). 

22 

We will now derandomize this randomized scheme to find a feasible solution with 
value within O(logm) from Z2. Notice that  the guarantee is somewhat weaker as 
D ~< m. We introduce the following potential function: 

• (x~,. . . ,x,) = c:Xj + M ~  l~,(~)~, 
j = l  i = l  

where 

1, ~j=1 a i j~  = O, 
1 {Ai(2)} = 

0, otherwise 

n and M is a large constant  to be chosen later. Notice that  i f O 0 (  ) = Y~j=l cjX~ ~< M, A" 
is feasible, while if J( is infeasible O(J() ~> ~ j = l  cjXj + M > M. Therefore, the value 
of  M distinguishes feasibility. If  we select 

1 with probability 1 - (1 - x ) )  k, 
Xj / 0 with probability (1 -x))* k, 

we obtain that  

e [o0( ) ]  = £ c/(1 - (1 - x;) ' )  + m(1 - P{F}) ~< kZ2 + m(1 - (1 - e-k)m). 
j = l  
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I f  we choose m so that kZ2 + m ( 1  - (1 - e k)m) ~< M, then E[@()~)] ~< M. We then 

use the method of conditional expectations (see [16, p. 223]), i.e., at the very first step 
we select X1 = 0 if E[~b()()IX1 = 0] ~< E[qb()~)]X1 = 1]; otherwise we select X1 = 1. 
Let x l , . . . , x r - a  be the values of  the variables that the algorithm selected in the first 

r -  1 steps. At step r, we select Xr = x r  in order to minimize over Xr C {0, 1} 
E[@(xl,..., Xr-l,Xr,...,Xn) ]Xr = xr]. In this way we obtain deterministically in poly- 
nomial time a solution XH with qb(XH) ~< E[@()()] ~< M, i.e., feasible. The cost of  this 
solution is ZH = C'XH = @(XH) <~ M. Our goal is then to choose k, M in order to op- 
timize the bounds, i.e., we solve: 

minimize M 
subject to kZ2 + M ( I  - (1 - e k)m) ~< M, (3) 

k , M ~ O .  

Choosing k = log m and 

logm ~ O(log m)Z2, 
a 4  = ( 1  _ = 

we can deterministically find, using the method of  conditional expectations, a feasi- 

ble solution xrt to the set covering problem with guarantee Zn/Z2 = O(logm). [] 

Remarks. 
1. I f  we choose k = logD + e, we obtain that 

log D + c IZ2 ~< ee-~(1ogD + c), 
Z2 (1 - e ~/D) D 

when D is sufficiently large. We can then optimize the bound by choosing the best 

C. 

2. Another  rounding function that also leads to an O(logm) approximation algo- 
rithm is the following. I f  xj ~> 1/log m, then set xj = 1. I f  xj < 1/log m, then set 
xj = 1 with probability xj logm. The p roof  that this leads to an O(logm) approx- 
imation proceeds along the same lines as before. We will next generalize this ran- 

domized rounding scheme to general covering problems. 

2.2. Constrained general covering problems 

We consider the problem 

(IP3) IZ3 = minimize 

subject to 

~ 1  cjxj 
n 

Zj=I  aijxj >>- bg, 
xj {0,1}, 

i ~ l ~ . . . ~ m .  

where aij, bi, cj are nonnegative integers. Notice that we can assume without loss of  
generality that aij ~< b~ for all i,j, because otherwise we can replace a~j with bi and the 

optimal value IZ3 will remain unchanged. Let Z3 be the value of  the LP relaxation. 
The best known approximation bounds for the problem are due to: 
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1. Hall and Hochbaum [17], generalizing earlier work of Hochbaum [18], Balas [19] 
and Bar-Yehuda and Even [20], who propose a dual heuristic H for the case that 

n aij are restricted to be 0 or 1 such that ZH/Z3 <~ f ,  where f = maxi ~j=~ aij. We 
refer to this bound as the row-sum bound. 

2. Dobson [21] and independently Fisher and Wolsey [22], generalizing earlier work 
of Johnson [11], Lovfisz [13] and Chv~ital [14] for the set covering problem, who 
propose a greedy heuristic for the problem and prove that if d = maxl~j~n 
~iml a~, then Za/Z3 <~ H(d). If amax is the largest entry in matrix A, then the re- 
sult is essentially Z~/Z3 <~ O(logmamax). We refer to this bound as the column- 
sum bound. 
In this section we show that the generic rounding heuristic with different rounding 

functions produces a stronger approximation than the row sum bound and a somewhat 
weaker version of  the column sum bound. In particular, using deterministic rounding 
we first obtain a heuristic H with guarantee Zn/Z3 <~ f for all covering problems (not 
restricted to aij = 0 or 1), thus generalizing all previous work regarding the row-sum 
bound (in Section 3 we also propose a generic rounding heuristic, but this time using 
dual information to achieve the same bound that has a much faster running time). 

Moreover, using randomized rounding, we obtain a heuristic H with guarantee 
Zn/Z3 ~< O(a .... logm), thus establishing a somewhat weaker version of the col- 
umn-sum bound. 

2.2.1. Determin&tic rounding 
We apply the generic rounding heuristic but with a deterministic rounding func- 

tion as follows. 
1. Solve the LP relaxation replacing xj E {0, 1 } with 0 ~< xj ~< 1. Let x* be an opti- 

mal solution. 
2. Ifx~ ~> I / f ,  then set xj = 1. 
3. If x) < 1 I f ,  then set xj = 0. 
Hochbaum [18] proposes this heuristic for set covering problems. Let ZH be the value 
of  the above heuristic. 

Theorem 2. The rounding heuristic produces a feasible solution that satisfies 

ZH 
- - ~ f .  Z3 

Proof. Let A = {j : xj ~> 1 I f } .  Let B = A c. Clearly A ~= O, because otherwise 

1 j ~  a 
aijx; < y ij <~ 1 <. bi, 

J 

i.e., the LP solution would not be feasible. We first show that the rounding heuristic 
produces a feasible solution. Suppose not. Then there exists a row i such that 
~jcA aij <~ bi - 1. Since the solution x* is feasible 
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bi <~ Z aijx} + Z aijx~ <~ bi-  1 + ~ aijx) 
jGA jcB jcB 

1 
< b i -  1 -]-~-~aij~cB <~ bi' 

which is a contradiction. Moreover ,  

1 c ZH z3 Zcjx; - Z  J 
jcA f jcA = f-" 

[ ]  

71 

2.2.2. Randomized rounding 
We next apply the generic randomized heuristic with a rounding  function similar 

to the one used in remark  2 in the end of  the previous subsection as follows. 

1. Solve the LP relaxation replacing xj E {0, 1 } with 0 ~< x 1 ~< 1. Let x* be an opti- 

mal solution. 

2. Let k = 2 a m a x l o g m  -F 2; amax = maxijaifi  let R = {j:  /c,c) ~< 1}. 
3. I f j ¢ R ,  t h e n x j = l .  

I f  j E R, then 

1 with probabil i ty kx}, 

xJ = 0 with probabil i ty 1 - kx). 

In order  to analyze the heuristic we need some tail estimates for sums of  indepen- 

dent, but  not  identical r andom variables. Let X~, i = 1 , . . . ,  n be independent  r a n d o m  

variables. N takes values rq with probabil i ty pq. Let 1~ = mini rq, ui = maxj rq. Let 

Y = ~'~inl X/. 

Proposition 1. 

( 02(E[X])2 ))_~7__1/5,[[~i - /i)2] P{X < (1 - 6)E[X]} < exp - 2 _ _ - - ~ 7 s : -  - - . (4) 

Proof.  Let  t > 0. 

E[e ,x] P{X < (1 - 6)E[X]} = P{e -'x > e -t(1-a)e[xl} ~< 
e t(l ~/~[Xl 

f rom Markov ' s  inequality. But, 

E[e-tXi]=ZPijetriS=ej tli(1-ZPij(1-e-t(rq-li)))j 

since 1 - x  ~< e -x. Fur thermore ,  

(5) 
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- ~ ' 

since e x <<. 1 - x + x2/2 for  x i> 0. Therefore,  

~< exp (- tE[X/]  + t2 -  EE(x, li)2] ) ' E[e -txi] 

Substituting to (5) we obtain 

P{X < ( 1 - ~ ) E [ X ] }  ~< exp -6tE[X] +~-i=~,1 E [ ( X / - l i )  2 . 

Picking t = 6 E [ X ] / ~  1E[(Xi - li) 2] to obtain the sharpest upper  bound,  we prove 
(4). [ ]  

Proposi t ion 1, which appears to be new, generalizes the tail estimates for 0-1 ran- 
dom variables. In the case that  Xg is a 0-1 r andom variable, li = 0, ui = 1 and 
E[X~ 2] = E[X~], (4) reduces to the tail estimate obta ined in [23] 

62E[X 1 
P{X < (1 - 5)E[X]} < e 2 

Similar bounds are to be found in [4]. 
We next analyze the generic randomized heuristic using Proposi t ion 1. 

T h e o r e m  3. The application of the generic randomized heur&tic gives a feasible solution 
of value ZH such that 

ZH 
- -  ~< O(amax lOg m). 
Z3 

P r o o f .  We consider the set R = {j: kx) ~< 1 } and its complement  R e. Let V, be the 
event that  constraint  i is violated and Ui = Vi c the event that  constraint  i is satisfied. 
Our  first goal is to find an upper  bound  on 

P{ Vi } = P I Z aijxj + ~-~ aij < bi } jcR j~R c 

I f  ~j~R ¢ aij ~ hi, then constraint  i is satisfied. So, we assume that  ~jER c aij ~ bi - 1. 
Let us first notice that  

Z aijx; bi- }2 aij 1. 
jER jER c 

Then, 

= { } P { ~ a i j x j < b i  Z a i j }  P{ Vii} P ~ aijxj -~ Z aij < b i  = 
jGR e jGR jER c 
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as bi - ~jeRc au <~ b~ - ~jcRo aux) ~ ~jeR aux', because x* is feasible. For j E R, let 
Yj = a~j with probability/cc~ and 0 otherwise. Notice that ~jcR E[Yj] = k ~jeR aijx). 
With 5- -  1 - 1/k 

P{Vz}~< { YJ< - E } e (1 a) E[Y+] . 
jGR jcR 

Using (4) with li = 0 we obtain 

P{V~}<exp - ~ ' /  ~<e ~ .... , 
Z..~jeR ijXj /I 

since ~++Ra~x~ <<. amax ~j+Raijx; and ~-'~jcRai+x~ >~ 1. 
m Let F = N~=I U~ be the event that the solution XH is feasible. Then 

since P{U~[Uj} > /P{G}.  Thus 

P{F}  >t (1 
(~-l)e h m 

_ e -2 -~mx)  . 

Moreover, 

jER jER c jeR jER e , /  

Since E[Zn] >t E[ZHIF]P{F}, 

E[GHIF]-- ~ k / ( 1  -- e 2kamax)(k 1)2x~ m ~ k / ( 1  -- e - k )  =. 
Z3 

For k = 2ama~ log m + 2, we obtain 

Z3 ~ (2amax logm + 2) 1 -  ---- O(amax logm). 

By derandomizing as in the proof  of Theorem 1 we can find deterministically a solu- 
tion xn that satisfies 

ZH = O(amax log m). [ ]  
Z3 

Dobson [21] achieves a bound O(logmaxj ~ ia i j )  by analyzing a greedy heuristic. 
The bound in this case is O(logm-Flogamax) as opposed to our weaker bound 
O(amax log m). For amax constant both bounds are O(log m). 
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2.3. Facility location 

We are given an undirected graph G = (V,E) (IVI = n) with costs cij ~> 0 for 
(i,j) E E and di ~> 0 for each i E V. The goal is to find a set S _c V of facilities that 

minimizes ~ i c s d  + ~i~vminjcsCij • The problem is NP-hard [1]. Hochbaum [24] 
presents a greedy algorithm for the problem with cost within O(log n) of  the opti- 
mum. Since the problem can be formulated as a set covering problem (this is a non- 
standard formulation) involving O(n 2) rows, this is not a surprise. Here we show that 
the O(log n) can be obtained directly from the standard formulation of this problem. 

In this section we show that the generic randomized heuristic returns a solution 
with cost within O(logn) of  the opt imum cost, i.e., it performs as well as any heur- 
istic can (unless P = NP). We start with the classical strong integer programming 
formulation of the problem. Let y~ = 1 if we locate a facility at node i 6 V, 0 other- 
wise. Let x~ 2 = 1 if customer i 6 V is assigned to facility j. Then, the problem can be 
formulated as follows. 

(IP4) IZ  4 = minimize ~-~(i,j)6E CijXij ~- ~ j 6 v  djyj 

subject to xij <~ yj, (i,j) E E, j E V 

~-~_ixij >~ 1, i =  1 , . . . , n ,  

xij, yj C {0, 1}. 

Let Z4 be the value of the LP relaxation. The randomized heuristic is as follows: 
1. Solve the LP relaxation and find the solution xu, yj. 
2. Round as follows: 

P{yj = 1} = 1 - (1 - y;)~, k = logn, 

1 - ( 1  - x ; j )  
P{x~j = 1 [yj = 1 } - 

1 - 

P{xij = l lyj = O} = O. 

In this way the constraints xij ~< yj are always satisfied. 
Let xn be the solution generated by this algorithm and Zn its cost. Notice that 

P { x i j = l } = l - ( 1 - x ~ j )  ~ and P{~ j  } = H s  ( 1 - ( 1 - x ~ ) k ) .  

We bound the performance of  the heuristic as follows. 

Theorem 4. 

E[ZHIxH is feasible] logn <~ 
Z4 (1 - 1/n)"" 

By derandomizing the randomized scheme we can find in polynomial time a feasible so- 
lution H such that 
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Z4 
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logn 
( 1  - l / n )  ~" 

75 

Proof. Let Ai be the event that customer i is not  assigned after the randomization.  Let 
m Ui = ACi. Let F = (-]~=1 Ui be the event that  the solution xn is feasible. Then 

P{Ai} = P =0 P 0 = P =0 1 -  x~/) k 
1, j = l  k j e V  j e V  " 

< I I  e-ai; ~< e k. 
jEv 

Therefore, as before 

P{F} = P  ~ > 

Moreover,  

E[Zu] = ~ cij(1 - (1 _ xij), k ) +  ~-~4(1 - (1 _ g)k) ~ kZ4.  
(i , j)cE j c V  

Therefore, 

E[ZH] >>. E[ZH [F]P{F} >~ E[Zn [F](1 - e-k) ", 

which implies that  

kZ4 
E[ZH IF] ~< 

( 1  - e - k )  " '  

Choosing k = log n, we obtain that  

E[ZH [F______~] <~ log n _ O(logn).  
Z 4 (1 -- ~)n 

The derandomization works exactly as in Theorem 1. [] 

n n 

HP{ } = H(1-  P{Ai}) >~ ( 1 -  e ~)n. 
j = l  j = l  

In order to derandomize the above procedure, we introduce the following poten- 
tial function: 

It 

~(X'Y) = Z cijXij+ ~ _ d y j + M Z I { A i ( X )  }, 
(i , j)cE j E V  i=1 

where 

I{Ai(X)} = { 1, ~ j n _ l X i j  = O, 

0, otherwise, 

and M is a large constant  to be chosen later. Proceeding in exactly the same way as in 
the set covering problem we obtain that  if we pick k = log n + log ~ and 
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log n + log 6 
m -- ] ~1~ ZLP, 

6 

we can deterministically find using the method of conditional expectations a feasible 
solution Xn, YH to the facility location problem with guarantee ZH/ZLp = O(logn). 

[] 

3. Deterministic rounding through duality theory 

We refer again to the general covering problem 

(IPs) IZ5 = minimize cx 

subject to Ax >1 b, 

x E X ,  

where A, b, c have nonnegative integer entries and X is either Z~ or {0, 1 }". 
We describe in this section a generic rounding heuristic that uses information 

from the dual of the LP relaxation of the above problem. In order to describe the 
dual heuristic we examine first the simpler case X = Z~_ and consider the linear pro- 
gramming relaxation 

(LP5) Z5 = minimize 

subject to 

and its dual 

CZX 

Ax >~ b, 

x ~ O ,  

Z5 = maximize y'b 
subject to yA <<. c, 

y~>0 .  

The dual heuristic is as follows. 

A generic dual heuristic: 
1. Find an optimal solution x*,y* of the LP relaxation (LPs) and its dual (Ds), re- 

spectively. 
2. If  the j th  constraint in the dual problem is tight, i.e., (y*A)j = cj, then xj = [x)~. 

Otherwise, xj = 0. 
Hochbaum [18] proposed the heuristic for the case of A having 0-1 entries and b, c 
are arbitrary nonnegative integers. To connect this generic heuristic with the rando- 
mized rounding heuristic of the previous section, let us observe that this dual heur- 
istic can also be interpreted as a deterministic rounding heuristic as follows: If x*, y* 
is a pair of eomplementary optimal solutions of (LPs) and (Ds), then the heuristic is 
clearly equivalent to the following deterministic rounding heuristic: 
1. Find an optimal solution x*, y* for problems (LPs) and (Ds). 
2. Let xj = [x~ be the solution proposed by the heuristic. 
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Critical to our analysis is an understanding of the structure of an optimal dual solu- 
tion. In the dual heuristic we use a particular dual optimal solution that satisfies cer- 
tain structural properties. In Sections 3.1 and 3.2 we apply the dual heuristic to 
unconstrained (X = Z+) and constrained (X = {0, 1}") covering problems respec- 
tively. In Section 3.3 we show that the dual heuristic leads to an O(n 2) approxima- 
tion algorithm that works without solving the LP relaxation. 

3.1. Unconstrained general covering problems 

We first apply the generic dual heuristic for the case X=Z~_. Let 
f = max/~:"-a au ~> 2, otherwise (IPs) is trivial. We apply the generic dual heuristic 
to (IP5) starting with an optimal solution x*,y*. Let ZH be the value of the heuristic. 

Theorem 5. The dual heuristic produces a solution with 

ZH 
- -  4 / + 1 .  
Z5 

Proof. Let x* and y* be an optimal primaLdual pair for (LP5) and (D5). The heuristic 
solution xj = Fx)] is feasible, since 

n n n 

ai, x, = a,,Fx;1 a,,x; b ,  
j - -1  j = l  j - - I  

Let K = {j : x) > 0}. Then, 

Z Z a..' , z . =   ,Fx;l= ,,y, r ;1 
j c K  ,GK 

m , , since cj = ~i=l  auYi for j E K by complementary slackness. Since [xjl ~< x) + 1 and 
~jcX aUx) > b~ implies that y,.* = 0 by complementarity we obtain 

z .  ~ b, + au y; = b,y; + auY; 
i=1  jEK ] i =1  ,=1  jGK 

m m 

<~ Z, + f Z y ;  <~ Zs + f Z b i y ;  = ( f +  1)Zs, 
i = l  i = l  

since bi ~> 1. [] 

3.2. Constrained general covering problems 

In this section we consider the case X = {0, 1 }n, which we call the constrained cov- 
ering program. We denote by IZ6 and by Z6 the optimal objective function value of 
this integer program and its linear relaxation, respectively. We prove that if we apply 
the generic dual heuristic, with a particular dual optimal solution, we obtain a fea- 
sible solution with 
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ZH <~ f Z6, 

where, as before, f = max/~j=1 aij. The analysis is considerably more complicated, 
but it leads to an O(n 2) approximation algorithm. This algorithm can be seen as the 
generalization of the algorithms of Goemans and Williamson [7], Williamson et al. 
[8] and Goemans et al. [9] for the cut covering problem (see Section 4). 

The linear programming dual of the problem is: 

m n 
(D6) Z6 = maximize ~-~i=1 biyi - ~ S = l  zj 

subject to i=l aijyi - zj <~ cj, j = 1 , . . . ,  n, 

yi ~ O, zj ~ O. 

If  (y, z) is a dual feasible solution we let 

X(y,z) = { j :  zj > 0}, 

jcX(y,z) 

jeg(y,z) 

C(Y,Z) = { i :  Z aij >bi  } .  
jcK(y,z) 

We first show that there exists an optimal dual solution with particular properties. 

Proposition 2. There exists an optimal dual (y*,z*) solution with the following two 
properties: 
1. Property 1: 

Either z~ = 0 f o r a l l  j or y~ = 0 f o r a l l  i E A(y*,z*) U C(y*,z*). (6) 

2. Property 2: 

Z Z; ~ ~ (b i -- l )Yi*.  (7) 
jcK(y*,z*) icB(y*,z*) 

Proof. We prove (7) first. Let (y,z) be an optimal dual solution. Note that if 
j E K ( y , z ) ,  then by complementarity, x j =  1. From complementary slackness 
yi = 0 for all i C C(y,z) ,  since for all i E C(y,z) ,  

Z a~jx j >~ aijxj = aij > b~. 
j = l  jCK(y,z) jCK(y,z) 

Ify~ = 0 for all i E A(y,z) then (7) of the proposition holds with y* = y,z* = z. Sup- 
pose then, there exists a p E A(y ,z)  such that Yv > 0. Let 



D. Bertsimas, R. Vohra / Mathematical Programming 80 (1998) 63~89 79 

• . Z "  

0 m m  
t. jc/@a):~pj>0 ap9) 

Notice that 0 > 0. We define a new dual solution (y', z') as follows: 

y~ (yi, i ¢ p ,  z t = { z j ,  j fgK(y,z),  
= { Y i  - -  O, i =p, J zj - -  a p j O ,  j E K(y,z). 

The process by which we obtain (y',z') from (y,z) we call reduction. We show first 
that the solution (y',z') is dual feasible: 

By the definition of 0, y~ /> 0, 4 ~> 0. Moreover, i f j  C K(y,z) 

j aijYi apjO zj  + apjO Z aijYi zj ~ cj. 
i=1 i=1 i=1 

If  j ¢ K(y, z), then, 

m 

Z ai, y; - = a,,yi - a ,O- z, <. c ,  
i=1 i=l 

The new dual feasible solution (y',z') is still optimal, because 

i=1 j= l  i=l j= l  jcK(y,z) i=1 j= l  

since p c A (y, z). 
Each time we perform a reduction operation either yp = 0 or ~ = 0 for some j 

such that apj > 0. Therefore, by repeating the reduction operation either we find 
an optimal dual solution that has z) = 0 for a l l j  ory~* = 0 for all i c A(y*,z*). In ad- 
dition, since (y*, z*) is optimal, it should satisfy complementary slackness, i.e., ?,* = 0 
for all i E C(y*,z*). Therefore, we have proved (6). 

We now proceed to prove (7) by showing 

z; <. Z Z ai, y: 
jcK(y* ,z* ) iEB(y* ,z* ) jEKCv* ,z* ) 

Notice that the above inequality implies (7), since for each i cB(y*,z*), 
~jEK(y*,z*) aij <~ b i -  l .  

If  y* = 0, z* = 0 then (7) is satisfied. Since y* = 0 and z) > 0 cannot be optimal in 
the dual (notice that y = 0, z = 0 is feasible in the dual), there exists a yp > 0 for some 
p c B(y*,z*). We apply a reduction operation again, i.e., construct a dual solution: 

y, = { y~, i ~ p, ~ = { z~, j ~ K(y*,z*), 
i y*-O, i=p ,  z~-apjO, jcK(y*,z*),  

where 0 = min(yp, minjc/@, z.): ,,,j>0 z)/apj) > 0. We first observe that, as before, the 
new solution is dual feasible (the only difference with the previous derivation, how- 
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ever, is that the new solution is not necessarily optimal, since p C B(y*, z*) rather than 
p c A(y*,z*)). 

Given a dual feasible solution (y, z) we define 

L(y,z)= ~ zj and R(y,z)= ~ ~ aijyi. 
jcK(y* ,z* ) iEB(v* ,z* ) jGK(y* ,z* ) 

We then want to show that L(y*,z*) <~ R(y*,z*). The second important observation 
is that after a reduction operation this inequality is preserved, i.e., 

L(y*,z*) <<, R(y*,z*) if and only if L(y',z') <<. R(y',z'). 

The reason is that 

L(y ' , z ' )=  E z' ,= Z (z;-ap,  O)= Z z ; - O  Z am. 
,eK(y*,z*) jeK(y*,z*) jcK(y*,z*) jeK(y*,z*) 

Moreover, 

R(y',z')= Z Z ai, y : - O  Z ap,. 
ieB(y*,z*) jeK(y* ,z*) jeK(y* ,z*) 

Therefore, since both the left and the right hand side of the inequality decrease by the 
same amount the inequality is preserved. 

Each time we perform a reduction operation either )/p = 0 or z 5. = 0 for some j 
such that apj > 0. Therefore, by repeating the reduction operation t times, either 
we find a dual solution that has z~ = 0 for all j or y[ = 0 for all i. In the first case 
(4 = 0 for all j), clearly 0 = L(3/,z t) <. R(yt,z t) and therefore, L(y*,z*) <~ R(y*,z*). 

In the second case (y[ = 0 for all i) we show that the solution (y*, z* - z  t) is also 
dual feasible contradicting the optimality of (y*, z*). 

Observe that the rth time we perform the reduction operation the solution is up- 
dated as follows: (9  = Y*, z° = z*); f = )/" 1 __ vr-1 and z ~ = z ~ I _ wr-l, where 

{0 ,  i~kp,., w ~ j = / O ,  j ~ K ( j - l , z ~  1), 

l)r = yi* --  O r, i = pr, [ apdO , j E K(yr-l,f" I). 

• c-~t-1 r t-1 If  yt . . . .  0, then yO 2-.r=0 V and z ° z ~ ~ = o  wr' 
F o r j  fgK(yt,zt), 4 = 0 and then 

m 

a o c,, 
Z=l  

since (y°,z°) is dual feasible. 
For j c K(yt,zt), 

~__~ a°,sy~ - ( z° - z})= ~ I i=~r=o = aijvr_ W~] = tr~o(aprjO= r -- apdO)r 

since j E K(yt,f), then j E KC~,Z ) for r ~< t - 1. 

= 0  ~ cj, 
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Therefore, this case cannot happen, otherwise (y*, z*) is not optimal. This proves 
(7). [] 

Notice, that the proof above is constructive. Starting with an arbitrary optimal 
dual solution found by a polynomial LP algorithm, we apply the reduction operation 
at most rain(m, n) times to arrive at a dual solution that satisfies the properties (6) 
and (7). We then apply the generic dual heuristic to this particular optimal dual so- 
lution to obtain a feasible solution xn with value Zn. 

Theorem 6. I f  we run the generic dual heuristic with an optimal dual solution (y*, z*) 
satisfying (6) and (7), 

Zn <~ f Z6. 

Proof. We showed in Proposition 2 that there exists an optimal dual solution (y*, z*) 
satisfying (6) and (7). Moreover, we can construct such a solution in polynomial time 
starting with an arbitrary optimal dual solution. Under the generic dual heuristic 

{10 if~=la~jY~ -z~=cj's 

xj = i f  ~i~=, aijy; - z~ < c s. 

If x* is an optimal solution to the LP relaxation, which is complementary to (y*, z*), 
then 

n n 

j = l  j = l  

and therefore, the solution xH is feasible. 
( • m aijyi*- jz*--cj ) T Let K = "/j" ~i=1 (. he value of the heuristic is 

m 

a * zH =Zc,--  
jGK j 6 K  i = l  jGK 

If z) = 0 for all j, then 
m in m 

Z n =  ~'~ E aijy* <. f ~-~y; <~ f E biy: = f Z6. 
j c K  i=l i=-1 i=1  

If y; = 0 for all i E A(y*,z*) U C(y*,z*) and ~j~K(y,z,)z~ ~< ~i~B(y,#,)(bi- 1)y~, then 

Z n = E  ~ aOY*- Z z~ <<.f ~ y* 
j ~ K  icB(y*,z*) jGK(y* #*) iGB(y*,z*) 

i=1  jcg(y*,z*) 

In both cases Zn ~< f Z6. [] 
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3.3. Algorithmic implications of  the generic' dual heuristic 

The generic dual heuristic does not provide a better guarantee than the determi- 
nistic rounding heuristic of  Section 2.2. Moreover, the analysis is considerably more 
complicated• The importance of the dual heuristic lies not so much in the guarantee 
it produces but rather in its proof. It suggests how a fast approximation algorithm 
for the constrained covering problem with performance guarantee f can be designed• 
Specifically, it is sufficient to construct a dual feasible solution (y, z) with the follow- 
ing properties: 

in 1. The solution obtained by letting x 1 = 1 when ~i=l  aijy~ - zj = cj is primal feasible. 
. m b 2. Ej lzj 4  -1)yi. 

The proof  of Proposition 2 hints at how such a dual solution is to be constructed; by 
working the reduction process in reverse. We now describe an O(n 2) approximation 
algorithm designed along these lines. Note that Hall and Hochbaum [17] propose an 
O(n 2) approximation algorithm for the special case of  the problem with agj = 0, 1. 
Our algorithm is different. 

The algorithm works in phases (very much in the spirit of  Williamson et al. [8]). 
The output of phase t is a dual feasible solution (yt, i )  and a vector x t. Each phase 
consists of a greedy type set covering algorithm. In the first phase, a primal solution, 
x ~ that covers every row at least once is generated. Any column j such that @ = 1 is 
deleted as well as any row i such that ~-~/aijx) >1 b~. This ensures that no column is 
ever selected twice and constraints that are satisfied are ignored. In the second phase 
we generate a primal solution x 2 using the remaining columns that covers all remain- 
ing rows at least once. At the end of this phase we delete all columns j such that 
x 2 = 1 and all rows i such that ~ja i j x  2 >/ b i -  ~ j  aijx~. In general, at the end of 
the tth phase we generate a solution x t such that: 

aijx} ~> 1 if and only if bi - ~_~ aij~ >~ 1. 
j--1 p--I j = l  

Hence, if the algorithm terminates after k phases, the vector x = ~pk=l x p will be pri- 
mal feasible. 

The input to phase t + 1 is: 
• t n 1. I ( t ) =  { , :  b i -  ~p=l ~j=la~j~ ~ 1} (theset o f rowsno t  yet completely covered). 

2. J(t) = { j :  ~ = 0 Vp ~< t} (the set of variables not yet set to l, i.e., the remaining 
columns). 

3. (yt, zt). 
Given I(t), J(t) and (yt,zt) from phase t, then phase t + 1 is as follows. 

P H A S E  t + 1 

Step 1: For  all j EJ( t )  (set of columns to be picked in this phase) set 

S j =  {i:  i c I(t),aij > O}; g(Sj) = ~-~iesjaij; K t+1 =~; y i=O,  i E /(t); Wj=Cj-- 
m t ~i=1 aijYi, j E J(t). 
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S tep  2: Let  0 = min j~d ( t )w jg (S i ) ;  r = a r g m i n j u ( t ) w J g ( S j )  (select the column with 
smallest reduced cost to column sum ratio). 
S tep  3: Set K ~+1 = K t+~ tO {r}; yg = 0, i C & (selection of  Yi in this manner  ensures 

that  ~i~s~ aijYi = Wr). 

S tep  4: Set wj = wj  - EiEl(t) aiJy i, J ~ J(t)  (update the reduced cost of  column j); 
Sj = Sj \ & (remove rows that  are covered; updat ing the reduced costs in this way 
and the choice of  0 ensure that at termination,  EiCSj aijy~ <<. w j V j  C J ( t ) ) .  

S t ep  5: I f  Uj~K,+~ Sj = l ( t ) ,  (every remaining row covered at least once) go to step 6. 
Otherwise go to step 2. 
S tep  6: I f  j C : K  t+l, s e t  x ? l = l ;  otherwise x ~ l = 0 ;  y , t + l = y ~ + y ~ , i E I ( t ) ;  
~ t +  1 m ~j = m a x ( ~ =  1 a~;y[ +~ - c~,0), j = 1 , . . . ,  n. 

Notice  that  the algori thm will terminate after at most  n phases, i.e., every primal 
variable is set to 1. Let the algori thm terminate after phase p. F r o m  the last par t  o f  
step 6, (yP, z p) will be dual feasible. We show next that  the vector  x = ~tP=I x t satisfies 

m the complementary  slackness condit ion,  xk = 1 if ~/=1 aik~ - ~ = ck. N o w  xk = 1 
implies that  at the end of  some phase, t + 1, say, x~ +l = 1. Observe that  at end of  
phase t + 1: 

E aijYi <~ wj,  j E J ( t ) ,  E aijYi = wy, j C X t+' , 
ieSj ieSj 

by steps 2 and 4. So, x~? 1 = 1 only if ~i~sk  aijyi = wk. By the definition of  wj and S +l, 
this implies that  x~  1 = 1 only if v~in a "t+l = cj. Hence,  if =,+l = 1, constraint  k of  Z-..ai= 1 ijYi .xj 
the dual is tight with respect to (yt+l zt+l). F r o m  Step 6, once a constraint  becomes 

in tight, it remains tight, i.e., ~ = 1  aik~ - ~ = c , ,  r >~ t + 1. 

Finally we use induction to show that  

n in 

E 4  ~ E ( h i -  1 ) ~ / .  

j - -1  i=1  

At the end of  phase 1, z~ = 0 .  So, ~ . _ 1  z) <<. ~m=l(b i - 1)y,!. 
Suppose that  ~ _ l Z ~  ~< ~ m = l ( b i -  1)y~. Notice that  ifz~? l > 0, then 

a " t + l  ~ ~  ~ . t + l  - -  a t 0 < 271 ijYi - cy = Z_~ uijy~ - cj = a~jy~ - cj ~:y} . 
i=1  i=1  iEl(t) 

Hence f rom step 6, j c [.Jr ,< t Kr, (i.e., x~ = 1 for some r ~< t); because if j c J ( t ) ,  

then ~eI( t )  a~jy~ - (c s - ~ = l  a~j~) = ~ c , ( t )  aijyi - wj  <~ 0 contradict ing z71 > 0. 
Hence,  

n 

E 4  ~1~- E zt~ 1 ~  E E ai jyi÷ E Z; 
j = l  jEOr 4 t Kr jEUr 4 t Kr iEl(t) j6Ur << t Kr 

in 

E E ,,y,+El i-lly  
jEUr <~ t Kr iEI(t) i =1  
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m m 

Z ( b i -  1 )y i+  ~-~(bi- 1)y~' : Z(bi- 1)y/+1. 
iEI(t) i= 1 i= 1 

Remark. The primal rounding heuristic of Section 2.2 produces a much shorter proof  
of  the bound. The heuristic, however, depends on the solution of the LP relaxation. 
In contrast the dual heuristic leads to an O(n 2) non LP-based algorithm. 

4. Cut covering problems 

Let G = (V,E), IV I = n be an undirected graph. Let f :  2 v ~ Z~ be a given set 
function. Let 6(S) = {e = (i,j) E Eli E S, j E V \ S } .  In this section we consider 
the following family of discrete optimization problems, which belongs to the class 
of  covering problems: 

(IPf) IZ s = minimize 

subject to 

Z e E E  cexe 

~-~eE6(s)Xe ~ f ( S )  VS, 

X e E X ,  

where X is either {0, 1 } or Z+. In Table 1 we list classical combinatorial problems 
formulated using the cutset formulation (IPs) (see [7]). 

Let Zf be the value of the LP relaxation. We first note that if the set function f is 
arbitrary, then the guarantees of  the previous cannot be further improved. Even if 
we restrict our attention to set functions f taking values in {0, 1}, IZu/Zf = ~(n) as 
can be seen from the following example: f(S) = 1 for all S such that IS] = n/2 and 

Table 1 
Some classical problems encompassed using a cutset formulation 

Problem 
Spanning tree 
Shortest path 
Steiner tree 
Generalized Steiner tree 
Nonbipartite matching 
T-join 
b-matching problem (~iv b(i) = 2k) 

Network survivability 
k-connected graph 
Tree partitioning 
Capacitated tree 

S(S) 
1 forall S ¢ O , V  
1, Isn {s,t)l = 1 
l if S N T  ¢O,T  
1 if SN Ti ~ , ~ ,  i =  1 . . . .  ,k 
1 if [SI = 2 k +  1 
l i f l S N T ] = 2 k + l  

1IS] />2, ~ic~b( i )=2k+l ,  
b(i) S = {i} V\{i}. 

maxe~6(s) re, re ~> 0 
k for all s ¢ 0, V 
1,if I S I~<k,I S I>n-k  

{ 2 ~  S C V ,  

2 ~  0 E S  



D. Bertsimas, R. Vohra / Mathematical Programming 80 (1998) 63~9 85 

Ce = 1. Then since Xe = 4 / n  2 is a feasible solution to the LP relaxation 
ZT ~ (4/n 2) (n(n - 1)/2) ~< 2. However, every integral solution should have at least 
n/2 edges implying that IZf >~ n/2, and therefore the ratio grows linearly with n. No- 
tice that a bound of O(n) follows immediately from the column sum bound, 
(O(log 2")). 

If we impose, however, some conditions on f we can approximate (IPf) signifi- 
cantly better. In particular if f satisfies f ( O ) = 0 ,  f ( S ) = f ( V - S )  and 
f ( A U B )  ~ m a x { f ( A ) , f ( B ) } ,  when A N B  = (~ (proper functions) Goemans and 
Williamson [7] propose a dual heuristic with value ZH such that 

zs 
where A = {i E V : f ({ i})  = 1}. These results are further generalized in [8,9] for 
more general set functions. For  f being proper, taking arbitrary integer values 
and X = {0, 1 }, the bound is extended in [9] to 

fmax 1 
Z H  2 Z _  ~ <~ = O(1ogfmax). 

i=1 l 

The technique used in these papers is the construction of a dual feasible solution that 
in addition to the properties in Proposition 2 has further special properties that fol- 
low from the particular properties o f f  and then the use of  the idea of the dual heur- 
istic of the previous section (when the dual constraint is tight the corresponding 
primal variable is set to 1). In this way these results can be seen as an application 
of the dual heuristic. 

A natural idea is to apply the randomized heuristic of Section 2. Our goal is to 
show that the application of the randomized heuristic gives rise: (a) to an interesting, 
we believe, extension of classical random graph theory and (b) to a connection of 
random graphs to approximability. 

Table 2 
Thresholds properties for the uniform random graph model 

Graph property 
Connectivity 

Graph has a matching 

Hamiltonicity 

k-connectivity 

critical p 

log n + cn 

n 

log n + cn 
2n 

logn + log logn + 2c, 
n 

logn + (k - 1) loglogn + cn 
n 
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4.1. Potential applications of random graphs in approximation algorithms 

The theory of  random graphs has developed independently from the study of ap- 
proximation algorithms in trying to understand the properties of randomly gener- 
ated graphs. The most widely used model (see for example [25]) involves a graph 
Gn,p on  n nodes, where each edge is present independently with the same probability 
p. The typical theorem proved under this model (for example [25]) is of the threshold 
type: 

Let A be a graph property; let p = (g(n) + c,)/n. 

1, cn --+ oo, 
{ } _eC l imP  Gn,phaspropertyA = e , c h i c ,  

n~oo 0 7 Cn __2, --(20. 

As examples, we list some important properties together with the corresponding cri- 
tical probabilities p. 

Let us attempt to apply the generic randomized heuristic for the class of  problems 
(IPf). We consider the LP relaxation and find the optimal solution x*. Let 

Pe =P{xe = 1} = 1 - (1 -x~) k/, 

where kf will be chosen later. In this way we obtain a random graph, in which each 
edge e has a probability Pe of being present. The properties of the random graph un- 
der this nonuniform random model have not been extensively studied in the theory of  
random graphs. We conjecture an intimate connection between properties of random 
graphs and approximation algorithms. 

Conjecture 1. I f  a graph property A can be modeled using a cutset formulation (IPf ) for 
some set function f and there is a critical probability p = (g(n) + c,)/n for which the 
random graph G,,p (under the uniform model) has property A, then the application of 
the generic randomized heuristic with P{Xe = 1} = 1 -- (1 -- Xe) g("t gives a solution Xn 
such that 

ZH 
- -  O ( g ( n ) ) .  
z/ 

Alon [26] proved the conjecture for f (S)  = 1, i.e., for the minimum spanning tree. 
We use his result to propose an O(logn) algorithm for a network design problem. 

For  example, suppose we solve the LP relaxation of the k-connected problem 
(f(S) = k). The corresponding critical probability is p = (logn + ( k -  1) loglogn+ 
c,)/n. Then, the conjecture would imply that there exists a solution ZH such that 

ZH 
~ f  ~< O(logn). 

We next use the result of  Alon [26] result to propose a log n approximation algorithm 
for a special network design problem. 
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4.2. A randomized approximation for a network design problem 

87 

In this section we consider the application of the generic randomized heuristic to a 
generic network design problem, that can be viewed as a variation of the shared fixed 
cost problem first considered by Rhys [27]. We are given a graph G = (V, E) and we 
want to select edges at cost de, so that we can construct m trees each with costs Ce ~, 
where k denotes the k tree (k = 1 , . . . ,  m). The problem can be formulated as follows. 

IZ7  = minimize ~_~ C~e~ + ~ dey e 
ecE ecE 

k subject to Z xe ~ 1, k = 1, . . . ,  m, S c_ V, 
eE6(S) 

<~Ye, e E E ,  k = l , . . . , m ,  Xe, YeE{O, 1}. 

We apply the randomized heuristic as follows: 
1. Solve the LP relaxation. Let x*, y* be the optimal solution. 
2. Let k = log n. 

P{ye 1} = 1 (1 , k 
= - - y e ) ;  

P{x~ = l lYe = 1} - 1 - (1 - x : )  ~ 
1 ( l _ y * )  k" 

P{x e = 11 = 0} = 0 .  

Alon [26] proved Conjecture 1, for the case o f f ( S )  = 1, i.e., he showed that if x* is a 
feasible solution to Pf with f (S)  . . . . .  1 and P{x~ 1} 1 (1 Xe)*'bl°gn, then with 

probability at least 1 - 1/n b the graph is connected. Using this result, it is immediate 
that the value ZH returned by the randomized heuristic satisfies: 

E[Zul F] _ O(logn),  
Z7 

k 
P{F} >~ 1 - - -  

n b" 

5. Concluding remarks 

We presented two methods to construct approximation algorithms for covering pro- 
blems: 
• Randomized rounding with nonlinear rounding functions and 
• Deterministic rounding using dual information. 
We saw that these two approximation methods match the best known bounds for 
several covering problems. 

Related to the question that motivated our research, whether there exists a sys- 
tematic way to construct approximation algorithms, we believe that these two algo- 
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r i thmic  ideas p rov ide  a unif icat ion o f  me thods  for  a pp rox ima t ing  discrete op t imiza-  

t ion problems.  

We close the p a p e r  with a s u m m a r y  o f  research d i rec t ions-conjec tures  that ,  we be- 

lieve, will enhance our  unde r s t and ing  o f  a p p r o x i m a t i o n  methods :  

1. Re la ted  to the quest ion o f  which p rob lems  can be a p p r o x i m a t e d  bet ter  t han  

others,  we believe tha t  as far as m i m s u m  (as opposed  to r a in -max)  p rob lems ,  

we believe tha t  only  cover ing p rob lems  can be a p p r o x i m a t e d  within a O ( logn )  

factor .  A l t h o u g h  this is no t  a fo rmal  ma thema t i ca l  s ta tement  we do  not  know 

o f  any  example  o f  a m i n - s u m  p r o b l e m  with a logar i thmic  or  a sub logar i thmic  

guaran tee  tha t  canno t  be fo rmula t ed  as a cover ing problem.  

2. The  r andomized  round ing  heurist ic  uses the non l inear  round ing  funct ion f ( x ) .  

While  we specified several round ing  funct ions,  we did no t  p ropose  a sys temat ic  

m e t h o d  to cons t ruc t  the round ing  funct ion.  The  p rob lem of  f inding the best  

r ound ing  funct ion f ( x )  in o rder  to minimize  E[Zu (f)] reduces to a calculus o f  var-  

ia t ions  p rob lem,  which seems to be difficult to solve at  its full general i ty.  

3. Inves t iga t ion  o f  Conjec ture  1 seems interest ing as an extension o f  r a n d o m  g raph  

theory;  a first step in this d i rect ion was taken by  A lon  [26]. App l i ca t ions  to ap-  

p rox imab i l i t y  could  also be interest ing to explore.  
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